• Title/Summary/Keyword: Continuous Strength Method

Search Result 246, Processing Time 0.024 seconds

A Study on the Development of Ultra-precision Small Angle Spindle for Curved Processing of Special Shape Pocket in the Fourth Industrial Revolution of Machine Tools (공작기계의 4차 산업혁명에서 특수한 형상 포켓 곡면가공을 위한 초정밀 소형 앵글 스핀들 개발에 관한 연구)

  • Lee Ji Woong
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.119-126
    • /
    • 2023
  • Today, in order to improve fuel efficiency and dynamic behavior of automobiles, an era of light weight and simplification of automobile parts is being formed. In order to simplify and design and manufacture the shape of the product, various components are integrated. For example, in order to commercialize three products into one product, product processing is occurring to a very narrow area. In the case of existing parts, precision die casting or casting production is used for processing convenience, and the multi-piece method requires a lot of processes and reduces the precision and strength of the parts. It is very advantageous to manufacture integrally to simplify the processing air and secure the strength of the parts, but if a deep and narrow pocket part needs to be processed, it cannot be processed with the equipment's own spindle. To solve a problem, research on cutting processing is being actively conducted, and multi-axis composite processing technology not only solves this problem. It has many advantages, such as being able to cut into composite shapes that have been difficult to flexibly cut through various processes with one machine tool so far. However, the reality is that expensive equipment increases manufacturing costs and lacks engineers who can operate the machine. In the five-axis cutting processing machine, when producing products with deep and narrow sections, the cycle time increases in product production due to the indirectness of tools, and many problems occur in processing. Therefore, dedicated machine tools and multi-axis composite machines should be used. Alternatively, an angle spindle may be used as a special tool capable of multi-axis composite machining of five or more axes in a three-axis machining center. Various and continuous studies are needed in areas such as processing vibration absorption, low heat generation and operational stability, excellent dimensional stability, and strength securing by using the angle spindle.

Collision Strength Assessment for Double Hull Type Product Carrier Using Finite Element Analysis (이중 선체 화학 운반선의 충돌 강도 평가)

  • Paik, Jeom-Kee;Lee, Jae-Myung;Lee, Kyung-Ern;Won, Suk-Hee;Kim, Chelo-Hong;Ko, Jae-Yong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.481-489
    • /
    • 2004
  • Ship collisions and grounding continue to occur regardless of continuous efforts to prevent such accidents. With the increasing demand for safety at sea and for protection of the environment, it is of crucial importance to be able to reduce the probability of accidents, assess their consequences and ultimately minimize or prevent potential damages to the ships and the marine environment. Numerical simulations for actual collision problem are conducted with a special attention with respect to finite element size, fracture criteria and material properties, which require a careful consideration to improve the accuracy. A parametric analysis varying colliding speed, angle, design loading condition is conducted using nonlinear finite element analysis method for 46,00 dwt Product/chemical carrier. The relationship between the absorbed energy and indentation are derived quantitatively using the insights observed from this study, and a novel design concept for assessing the anti-collision performance are proposed.

Manufacturing and Mechanical Properties of Epoxy Fibers Spinning using Anhydride and Amine Hardeners (산 무수물계 및 아민계 경화제를 이용한 열경화성 에폭시 섬유 제조 및 물성)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.408-413
    • /
    • 2016
  • Commonly-used polymers are manufactured as versatile forms. Furthermore, continuous polymer fibers are recently manufactured using nylon or aramid fiber. One of common epoxy was also used to make polymer fibers. Bisphenol-A type was used as base epoxy whereas amine and anhydride were used as hardeners. Epoxy fibers was cured by stepping up the temperature to maintain the shape of epoxy fiber. Surface energy was measured to confirm the degree of interfacial adhesion by modified static contact angle method. After mechanical properties were measured via fiber tensile test, the evaluation of fiber fracture was proceeded. Tensile strength of epoxy fiber using amine type hardener was higher as 138 MPa than anhydride case as 70 MPa. Fractured surface exhibited different failure patterns at the cross-section.

Studies on the Interfacial Reaction between Electroless-Plated UBM (Under Bump Metallurgy) on Cu pads and Pb-Sn-Ag Solder Bumps (Cu pad위에 무전해 도금된 UBM (Under Bump Metallurgy)과 Pb-Sn-Ag 솔더 범프 계면 반응에 관한 연구)

  • Na, Jae-Ung;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.853-863
    • /
    • 2000
  • In this study, a new UBM materials system for solder flip chip interconnection of Cu pads were investigated using electroless copper (E-Cu) and electroless nickel (E-Ni) plating method. The interfacial reaction between several UBM structures and Sn-36Pb-2Ag solder and its effect on solder bump joint mechanical reliability were investigated to optimife the UBM materials design for solder bump on Cu pads. Fer the E-Cu UBM, continuous coarse scallop-like $Cu_{6}$ $Sn_{5}$ , intermetallic compound (IMC) was formed at the solder/E-Cu interface, and bump fracture occurred this interface under relative small load. In contrast, Fer the E-Ni/E-Cu UBM, it was observed that E-Ni effectively limited the growth of IMC at the interface, and the Polygonal $Ni_3$$Sn_4$ IMC was formed because of crystallographic mismatch between monoclinic $Ni_3$$Sn_4$ and amorphous E-Ni phase. Consequently, relatively higher bump adhesion strength was observed at E-Ni/E-Cu UBM than E-Cu UBM. As a result, it was fecund that E-Ni/E-Cu UBM material system was a better choice for solder flip chip interconnection on CU PadS.

  • PDF

A Study on the Mechanical Properties of Gas Pressure Welded Splices of Deformed Reinforcing Bar (가스압접 이형철근의 기계적 강도 특성 연구)

  • Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.520-526
    • /
    • 2015
  • Reinforcing bar splices are inevitable in reinforced concrete structure. In these days, there are three main types of splices used in reinforced concrete construction site - lapped splice, mechanical splice and welded splice. Low cost, practicality in construction site, less time consuming and high performance make gas pressure welding become a favorable splice method. However, reinforcing bar splice experiences thermal loading history during the welding procedure. This may lead to the presence of residual stress in the vicinity of the splice which affects the fatigue life of the reinforcing bar. Therefore, residual stress analysis and tensile test of the gas pressure welded splice are carried out in order to verify the load bearing capacity of the gas pressure welded splice. The reinforcing bar used in this work is SD400, which is manufactured in accordance with KS D 3504. The results show that the residual stresses in welded splice is relatively small, thus not affecting the performance of the reinforcing bar. Moreover, the strength of the gas pressure welded splice is high enough for the development of yielding in the bar. As such, the reinforcing bar with gas pressure welded splice has enough capacity to behave as continuous bar.

Synthesis of Surface Crosslinked Poly(sodium acrylate) for Delayed Absorption in Cement Solution (시멘트 수용액에서 흡수 지연을 위한 Crosslinked Poly(sodium acrylate)의 표면 가교)

  • Hwang, Ki-Seob;Jang, Seok-Soo;Jung, Yong-Wook;Lee, Seung-Han;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.363-369
    • /
    • 2011
  • To study the effect of incorporation of a surface crosslinking layer on a crosslinked poly (sodium acrylate) (cPSA) absorbent with ethylene glycol dimethacrylate CEGDMA), we synthesized several surface crosslinked cPSAs with EGDMA by an inverse emulsion polymerization method to delay the absorption of excess water in concrete, Liquid paraffin was used as a continuous phase. cPSA was synthesized with acrylic acid (AA) neutralized with aqueous 8 M sodium hydroxide solution as a monomer, N,N-methylene bisacrylamide (MBA) as crosslinking agent and ammonium persulfate (APS) and sodium metabisulfite (SMBS) as a redox initiator system by inverse emulsion polymerization. FTIR spectroscopy was used to characterize $Ca^{2+}$ ion interaction with cPSA and cPSA-EGDMAs. The swelling ratios of synthesized absorbents were evaluated from the absorption in deionized water, cement saturated aqueous solution and aqueous solution of calcium hydroxide (pH 12). Equilibrium swelling times for cPSA and surface crosslinked cPSA with EGDMA were 2 and 3 hrs, respectively. We also observed an increase in setting time of the cement and an increase in the compressive strength of mortar by addition of the synthesized cPSA-EGDMA.

Performance of Railway Roadbed Reinforced by Acrylate in Laboratory Experiment (실내실험을 통한 아크릴레이트의 철도노반 보강 성능)

  • Yoon, Hwan-Hee;Son, Min;Kim, Jin-Hwan;Kim, Dong-Hyun;Kim, Byung-Hyun;Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.9-19
    • /
    • 2021
  • This paper deals with the reinforcement performance of acrylate for reinforcing the settled railway roadbed. Concrete tracks have the advantage of reducing track maintenance costs and high resistance to track destruction. However, roadbed settlement is occurring in some construction sections, and the safety of railways is a serious concern because of difficulties in maintenance. Currently, maintenance through the track restoration method is being carried out in Korea as a way of roadbed settlement in concrete tracks, but continuous re-settlement can occur because the roadbed itself cannot be reinforced, and there are very few cases of reinforcement of railway roadbeds and field application. So the development of reinforcement materials and construction methods to reinforce railway roadbeds is required. Therefore, in this paper, acrylate was selected as reinforcement material for railway roadbed, and the reinforcement performance of acrylate was analyzed through experiment. As a result, it was analyzed that the acrylate can penetrate into a permeability coefficient of 1×10-4 cm/sec, and secure uniaxial compression strength of 0.5 MPa/30min or more and stiffness of 80 MPa or more.

A Study of the Regeneration of Spent GAC using an Electrochemical Method (전기화학적 방법을 이용한 Spent Granular Activated Carbon (GAC)의 재생 연구)

  • Lee, Sangmin;Joo, Soobin;Jo, Youngsoo;Oh, Yeji;Kim, Hyungjun;Shim, Intae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.481-491
    • /
    • 2022
  • This study investigates the characteristics of the GAC adsorption behavior during the operation of a multi-stage cross-flow filtration and GAC adsorption process for the purpose of devising an advanced treatment of combined sewer overflows (CSOs) and evaluates the regeneration efficiency of spent GAC that has reached the design breakpoint. During the filtration process, suspended substances are easily removed, but dissolved organic substances are not removed, necessitating a process capable of removing dissolved organic substances for the advanced treatment of CSOs. In general, GAC adsorption has been applied under low-concentration organic conditions, such as for water purification and tertiary treatments of sewage, and has rarely been applied under conditions with high organic concentrations, such as with sewage or CSOs. Accordingly, this study will provide a new and interesting experience. Also in this study, the continuous operation and breakthrough characteristics of GAC according to the strength of the inflow organic matter were investigated, electrochemical regeneration was applied to the used GAC, and the regeneration efficiency was evaluated through desorption and re-adsorption tests. The results showed that the breakthrough period was 21 days under high concentration conditions, 28 days at medium concentrations, and 32 days under low concentration conditions. The desorption of adsorbed organic matter through electrolysis occurred in the range of 188 to 609 mgCOD/L depending on the electrolysis conditions, and the effect of the electrolyte type led to the finding that NaOH was slightly higher than H2O2.

Comparative analysis of cutting performance for basalt and granite according to abrasive waterjet parameters (연마재 워터젯 변수에 따른 현무암 및 화강암 절삭성능 비교분석)

  • Park, Jun-Sik;Cha, Hyun-Jong;Jo, Seon-Ah;Jung, Ju-Hwan;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.395-409
    • /
    • 2022
  • To overcome the limitation of conventional rock excavation methods, the excavation with abrasive waterjet has been actively developed. The abrasive waterjet excavation method has the effect of reducing blasting vibration and enhancing the excavation efficiency by forming a continuous free surface on the rock. However, the waterjet cutting performance varies with rock fracturing characteristics. Thus, it is necessary to analyze the cutting performance for various rocks in order to effectively utilize the waterjet excavation. In this study, cutting experiments with the high pressure waterjet system were performed for basalt and granite specimens. Water pressure, standoff distance, and traverse speed were determined as effective parameters for the abrasive waterjet cutting. The cutting depth and width of basalt specimens were analyzed to compare with granite results. The averaged cutting depth of basalt was shown in 41% deeper than granite; in addition, the averaged cutting width of basalt was formed by 18.5% narrower than granite. The results of this study are expected to be useful basic data for applying rock excavation site with low strength and high porosity such as basalt.

Rheological and Debinding Properties of Al2O3/Paraffin Wax/High Density Polyethylen System Mixture by Injection Molding (사출성형에 의한 Al2O3/Paraffin Wax/High Density Polyethylen계 혼합물의 유동성 및 탈지 특성)

  • 김승겸;신대용;한상목;강위수
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.395-400
    • /
    • 2004
  • The effects of compositions of binders on the rheological properties of mixtures and the preparation conditions on the formation of defects and the debinding characteristics of compacts for the injection molding of ceramic powders (65 wt% aluminaㆍ35 wt% feldspar) were studied. Ceramic powders were coated with 2 wt% of stearic acid and then mixed with 15, 20, and 25 wt% of Paraffin Wax (PW) and High Density Polyethylene (HDPE) as binders at $160^{\circ}C$ for 2 h. Rheological properties were investigated by using capillary rheometer. Apparent viscosities of mixtures were 80∼300 Paㆍs at 1,000$s^{-1}$ of a shear rate, it was good for the injection molding and depending on the compositions of binders. Short shot was formed at 15H5P5 (the ratio of HDPE : PW=5 : 5 in 15 wt% of binders) compacts without injection pressures and any noticeable defects were not formed at 45 kgf/$cm^{2}$ in 20H5P5 compacts. PW and HDPE were removed by the solvent extraction and thermal debinding method. Thermal debinding of HDPE at $450^{\circ}C$ for 5 h, which followed the extraction of PW was using n-heptane solvent at $70^{\circ}C$ for 5 h. Continuous pores in compacts, which facilitate the removal of HDPE by the thermal debinding, were found to form in the compacts when PW was removed by the solvent extraction. The optimum composition of binder at which binder was removed by thermal debinding without defects while maintaining the compact strength was 20H5P5. Bulk density, porosity and 3-point bending strength of 20H5P5 compact sintered at 1,30$0^{\circ}C$ for 5 h were 2.8, < 3%, and 2,400 kgf/$cm^{2}$, respectively, and can be used as a structural materials.