• Title/Summary/Keyword: Continuous Scanning

Search Result 242, Processing Time 0.028 seconds

EFFECT OF STEP CURING ON THE CONTRACTION STRESS AND MARGINAL ADAPTATION OF RESIN RESTORATION (단계별 광중합 방식이 복합레진 수복물의 수축 응력과 변연 접합도에 미치는 영향)

  • Park, Jong-Whi;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.2
    • /
    • pp.221-232
    • /
    • 2006
  • The purpose of this study was to investigate the effect of step-curing mode on polymerization shrinkage and contraction of composite resin restoration. Class I cavities were prepared on the extracted human premolars. The cavities were ailed with Filtek $Z-250^{TM}$ (hybrid resin, 3M ESPE, USA) and Filtek $flow^{TM}$ (flowable resin, 3M ESPE, USA) and cured with one of the following irradiation modes; Halogen 40sec with continuous curing, LED 10sec with continuous curing, and LED 13sec with step-curing. Contraction stress was measured with strain gauge which was connected to TML $Datalogger^{TM}$ (TDS-102, SOKKI, Japan) and resin-dentin interfaces were observed by scanning electron microscope. The results of present study can be summarized as follows : 1. Composite resin restoration showed transient expansion just after irradiation of curing light. Contraction stress was increased rapidly at the early phase of polymerization and reduced slowly as time elapsed (P<0.05) 2. $Filtek\;flow^{TM}$ showed lower contraction stress than Filtek $Z-250^{TM}$ regardless of curing modes. 3. LED step-curing mode showed lowest contraction stress in Filtek $Z-250^{TM}$ compared with other curing modes(P<0.05). 4. LED step-curing mode showed lowest contraction stress in $Filtek\;flow^{TM}$ compared with other curing modes(P<0.05), but difference in contraction stress was not so greate as in $Filtek\;Z-250^{TM}$. 5. Polymerization of composite resin by LED light with step-curing mode and halogen light with continuous ode resulted in better marginal sealing than LED light with continuous mode.

  • PDF

Adsorption Characteristics of H2S on Adsorbent Made by Sewage Sludge in Fixed Bed Adsorption Column (하수슬러지를 활용하여 제조한 흡착제의 고정흡착층에서의 H2S 흡착특성)

  • Park, Chun-Dong;Youn, Ju-Young;Park, Yeong-Seong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.718-722
    • /
    • 2012
  • $H_2S$ adsorption characteristics of adsorbent made by sewage sludge were investigated. For analyses of the manufactured adsorbent, various methods such as Iodine adsorptivity, scanning electron microscope (SEM), and measurements of BET surface area and pore volume were adopted. As the major adsorption characteristic, breakthrough curve was measured by using a continuous fixed bed adsorption column for operating variables such as adsorption temperature ($25{\sim}45^{\circ}C$), aspect ratio (L/D)(3~9), gas flow rate (0.1~2.0 liter/min) and $H_2S$ gas concentration (50~200 ppm). The experimental result showed that the carbonization and activation of sewage sludge are very important for the improvement in $H_2S$ adsorption capacity.

Fabrication of Optically Active Nanostructures for Nanoimprinting

  • Jang, Suk-Jin;Cho, Eun-Byurl;Park, Ji-Yun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.393-393
    • /
    • 2012
  • Optically active nanostructures such as subwavelength moth-eye antireflective structures or surface enhanced Raman spectroscopy (SERS) active structures have been demonstrated to provide the effective suppression of unwanted reflections as in subwavelength structure (SWS) or effective enhancement of selective signals as in SERS. While various nanopatterning techniques such as photolithography, electron-beam lithography, wafer level nanoimprinting lithography, and interference lithography can be employed to fabricate these nanostructures, roll-to-roll (R2R) nanoimprinting is gaining interests due to its low cost, continuous, and scalable process. R2R nanoimprinting requires a master to produce a stamp that can be wrapped around a quartz roller for repeated nanoimprinting process. Among many possibilities, two different types of mask can be employed to fabricate optically active nanostructures. One is self-assembled Au nanoparticles on Si substrate by depositing Au film with sputtering followed by annealing process. The other is monolayer silica particles dissolved in ethanol spread on the wafer by spin-coating method. The process is optimized by considering the density of Au and silica nano particles, depth and shape of the patterns. The depth of the pattern can be controlled with dry etch process using reactive ion etching (RIE) with the mixture of SF6 and CHF3. The resultant nanostructures are characterized for their reflectance using UV-Vis-NIR spectrophotometer (Agilent technology, Cary 5000) and for surface morphology using scanning electron microscope (SEM, JEOL JSM-7100F). Once optimized, these optically active nanostructures can be used to replicate with roll-to-roll process or soft lithography for various applications including displays, solar cells, and biosensors.

  • PDF

The research on static and dynamic mechanical properties of concrete under the environment of sulfate ion and chlorine ion

  • Nie, Liangxue;Xu, Jinyu;Bai, Erlei
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.205-214
    • /
    • 2017
  • The Hydraulically driven test system and ${\Phi}100mm$ split Hopkinson pressure bar(SHPB) test device were employed to research the quasi-static and dynamic mechanical properties of concrete specimens which has been immersed for 60 days in sodium sulfate (group S1) and sodium chloride (group S2) solution, the evolution of their mass during corrosive period was explored at the same time, and the mechanism of performances lost was analyzed from the microscopic level by using scanning electron microscope. Results of the experimental indicated that: their law of mass both presents the trend of continuous rising during corrosive period, and it increases rapidly on the early days, the mass growth of group S1 and group S2 in first 7 days are 76.78% and 82.82% of their total increment respectively; during the corrosive period, the quasi-static compressive strength of specimens in two groups are significantly decreased, both of which present the trend of increase first and then decrease, the maximum growth rate of group S1 and group S2 are 7.52% and 12.71% respectively, but they are only 76.23% and 82.84% of specimens which under normal environment (group N) on day 60; after immersed for 60 days, there were different decrease to dynamic compressive strength and specific energy absorption, and so as their strain rate sensitivities. So the high salinity environment has a significant effect of weaken the quasi-static and dynamic mechanical performance of concrete.

Sediment monitoring for hydro-abrasive erosion: A field study from Himalayas, India

  • Rai, Anant Kr.;Kumar, Arun
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.146-153
    • /
    • 2017
  • Sediment flow through hydropower components causes hydro-abrasive erosion resulting in loss of efficiency, interruptions in power production and downtime for repair/maintenance. Online instruments are required to measure/capture the variations in sediment parameters along with collecting samples manually to analyse in laboratory for verification. In this paper, various sediment parameters viz. size, concentration (TSS), shape and mineral composition relevant to hydro-abrasive erosion were measured and discussed with respect to a hydropower plant in Himalayan region, India. A multi-frequency acoustic instrument was installed at a desilting chamber to continuously monitor particle size distribution (PSD) and TSS entering the turbine during 27 May to 6 August 2015. The sediment parameters viz. TSS, size distribution, mineral composition and shape entering the turbine were also measured and analysed, using manual samples collected twice daily from hydropower plant, in laboratory with instruments based on laser diffraction, dynamic digital image processing, gravimetric method, conductivity, scanning electron microscope, X-ray diffraction and turbidity. The acoustic instrument was able to capture the variation in TSS; however, significant deviations were found between measured mean sediment sizes compared to values found in the laboratory. A good relation was found for turbidity ($R^2=0.86$) and laser diffraction ($R^2=0.93$) with TSS, which indicated that turbidimeter and laser diffraction instrument can be used for continuous monitoring of TSS at the plant. Total sediment load passed through penstock during study period was estimated to be 15,500 ton. This study shall be useful for researchers and hydropower managers in measuring/monitoring sediment for hydro-abrasive erosion study in hydropower plants.

A Study on Generation and Operation of Dynamic Pattern at Micro-stereolithography using $DMD^{TM}$ ($DMD^{TM}$를 이용한 마이크로 광 조형 시스템에서 다이나믹 패턴 생성 및 구동에 관한 연구)

  • Kim H.S.;Choi J.W.;Ha Y.M.;Kwon B.H.;Won M.H.;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1214-1218
    • /
    • 2005
  • As demands for precision parts are increased, existing methods to fabricate them such as MEMS, LIGA technology have the technical limitations like high precision, high functionality and ultra miniaturization. A micro-stereolithography technology based on $DMD^{TM}$(Digital Micromirror Device) can meet these demands. In this technology, STL file is the standard format as the same of conventional rapid prototyping system, and 3D part is fabricated by stacking layers that are sliced as 2D section from STL file. Whereas in conventional method, the resin surface is cured as scanning laser beam spot according to the section shape, but in this research, we use integral process which enables to cure the resin surface at one time. In this paper, we deal with the dynamic pattern generation and $DMD^{TM}$ operation to fabricate micro structures. Firstly, we address effective slicing method of STL file, conversion to bitmap, and dynamic pattern generation. Secondly, we suggest $DMD^{TM}$ operation and optimal support manufacturing for $DMD^{TM}$ mounting. Thirdly, we examine the problems on continuous stacking layers, and their improvements in software aspects.

  • PDF

Effect of Mo and Mn Addition on the Oxidation Behavior of Binary Ti-Al Alloys

  • Han, Chang-Suk;Jin, Sung-Yooun;Bang, Hyo-In
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.361-364
    • /
    • 2018
  • Binary Ti-Al alloys below 51.0 mass%Al content exhibit a breakaway, transferring from parabolic to linear rate law. The second $Al_2O_3$ layer might have some protectiveness before breakaway. Ti-63.1 mass%Al oxidized at 1173 K under parabolic law. Breakaway oxidation is observed in every alloy, except for Ti-63.1 mass%Al. After breakaway, oxidation rates of the binary TiAl alloys below 34.5 mass%Al obey almost linear kinetics. The corrosion rate of Ti-63.1 mass%Al appears to be almost parabolic. As content greater than 63.0 mass% is found to be necessary to form a protective alumina film. Addition of Mo improves the oxidation resistance dramatically. No breakaway is observed at 1123 K, and breakaway is delayed by Mo addition at 1173 K. At 1123 K, no breakaway, but a parabolic increase in mass gain, are observed in the Mo-added TiAl alloys. The binary Ti-34.5 mass%Al exhibits a transfer from parabolic to linear kinetics. At 1173 K, the binary alloys show vary fast linear oxidation and even the Mo-added alloys exhibit breakaway oxidation. The 2.0 mass%Mo-added TiAl exhibits a slope between linear and parabolic. At values of 4.0 and 6.0 mass% added TiAl alloys, slightly larger rates are observed than those for the parabolic rate law, even after breakaway. On those alloys, the second $Al_2O_3$ layer appears to be persistently continuous. Oxidation resistance is considerably degraded by the addition of Mn. Mn appears to have the effect of breaking the continuity of the second $Al_2O_3$ layer.

A Study of Properties of Sn-3Ag-0.5Cu Solder Based on Phosphorous Content of Electroless Ni-P Layer (Sn-3Ag-0.5Cu Solder에 대한 무전해 Ni-P층의 P함량에 따른 특성 연구)

  • Shin, An-Seob;Ok, Dae-Yool;Jeong, Gi-Ho;Kim, Min-Ju;Park, Chang-Sik;Kong, Jin-Ho;Heo, Cheol-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.481-486
    • /
    • 2010
  • ENIG (electroless Ni immersion gold) is one of surface finishing which has been most widely used in fine pitch SMT (surface mount technology) and BGA (ball grid array) packaging process. The reliability for package bondability is mainly affected by interfacial reaction between solder and surface finishing. Since the behavior of IMC (intermetallic compound), or the interfacial reaction between Ni and solder, affects to some product reliabilities such as solderability and bondability, understanding behavior of IMC should be important issue. Thus, we studied the properties of ENIG with P contents (9 wt% and 13 wt%), where the P contents is one of main factors in formation of IMC layer. The effect of P content was discussed using the results obtained from FE-SEM(field-emission scanning electron microscope), EPMA(electron probe micro analyzer), EDS(energy dispersive spectroscopy) and Dual-FIB(focused ion beam). Especially, we observed needle type irregular IMC layer with decreasing Ni contents under high P contents (13 wt%). Also, we found how IMC layer affects to bondability with forming continuous Kirkendall voids and thick P-rich layer.

Particle Refinement and Nano-structure Formation of Gas Atomized Al-14wt.%Ni-14 wt.%Mm Alloy Powder by Mechanical Milling (가스 분사된 Al-14wt.%Ni-14wt.%Mm 합금 분말의 기계적 밀링에 의한 입자 미세화와 나노조직 형성)

  • 홍순직;이윤석;천병선
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.26-33
    • /
    • 2003
  • Al-l4wt.%Ni-l4wt.% Mm(Mm=misch metal) alloy powders rapidly solidified by the gas atomization method were subjected to mechanical milling(MM). The morphology, microstructure and hardness of the powders were investigated as a function of milling time using scanning electron microscopy(SEM), transmission electron microscopy(TEM) and Vickers microhardness tester. Microstructural evolution in gas-atomized Al-l4wt.%Ni-l4wt.% Mm(Mm=misch metal) alloy powders was studied during mechanical milling. It was noted that the as-solidified particle size of $200\mutextrm{m}$ decreases during the first 48 hours and then increases up to 72 hours of milling due to cold bonding and subsequently there was continuous refinement to $20\mutextrm{m}$ on milling to 200 hours. Two microstructurally different zones, Zone A, which is fine microstructure area and Zone B, which has the structure of the as-solidified powder, were observed. The average thickness of the Zone A layer increased from about 10 to $15\mutextrm{m}$ in the powder milled for 24 hours. Increasing the milling time to 72 hours resulted in the formation of a thicker and more uniform Zone A layer, whose thickness increased to about $30~50\mutextrm{m}$. The TEM micrograph of ball milled powder for 200 hours shows formation of nano-particles, less than 20 nm in size, embedded in an Al matrix.

Sol-gel Derived Nano-glass for Silicon Solar Cell Metallization (솔-젤법에 의해 제조된 실리콘 태양전지 전극형성용 나노 글래스)

  • Kang, Seong Gu;Lee, Chang Wan;Chung, Yoon Jang;Kim, Chang-Gyoun;Kim, Seongtak;Kim, Donghwan;Lee, Young Kuk
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.173-176
    • /
    • 2014
  • We have investigated the seed layer formation of front side contact using the inkjet printing process. Conductive silver ink was printed on textured Si wafers with 80 nm thick $SiN_x$ anti reflection coating (ARC) layers and thickened by light induced plating (LIP). The inkjet printable sliver inks were specifically formulated for inkjet printing on these substrates. Also, a novel method to prepare nano-sized glass frits by the sol-gel process with particle sizes around 5 nm is presented. Furthermore, dispersion stability of the formulated ink was measured using a Turbiscan. By implementing these glass frits, it was found that a continuous and uniform seed layer with a line width of $40{\mu}m$ could be formed by a inkjet printing process. We also investigated the contact resistance between the front contact and emitter using the transfer length model (TLM). On an emitter with the sheet resistance of $60{\Omega}/sq$, a specific contact resistance (${\rho}_c$) below $10m{\Omega}{\cdot}cm^2$ could be achieved at a peak firing temperature around $700^{\circ}C$. In addition, the correlation between the contact resistance and interface microstructures were studied using scanning electron microscopy (SEM). We found that the added glass particles act as a very effective fire through agent, and Ag crystallites are formed along the interface glass layer.