DOI QR코드

DOI QR Code

Particle Refinement and Nano-structure Formation of Gas Atomized Al-14wt.%Ni-14 wt.%Mm Alloy Powder by Mechanical Milling

가스 분사된 Al-14wt.%Ni-14wt.%Mm 합금 분말의 기계적 밀링에 의한 입자 미세화와 나노조직 형성

  • 홍순직 (충남대학교 급속응고 신소재연구소) ;
  • 이윤석 (한국과학기술정보연구원) ;
  • 천병선 (충남대학교 급속응고 신소재연구소)
  • Published : 2003.02.01

Abstract

Al-l4wt.%Ni-l4wt.% Mm(Mm=misch metal) alloy powders rapidly solidified by the gas atomization method were subjected to mechanical milling(MM). The morphology, microstructure and hardness of the powders were investigated as a function of milling time using scanning electron microscopy(SEM), transmission electron microscopy(TEM) and Vickers microhardness tester. Microstructural evolution in gas-atomized Al-l4wt.%Ni-l4wt.% Mm(Mm=misch metal) alloy powders was studied during mechanical milling. It was noted that the as-solidified particle size of $200\mutextrm{m}$ decreases during the first 48 hours and then increases up to 72 hours of milling due to cold bonding and subsequently there was continuous refinement to $20\mutextrm{m}$ on milling to 200 hours. Two microstructurally different zones, Zone A, which is fine microstructure area and Zone B, which has the structure of the as-solidified powder, were observed. The average thickness of the Zone A layer increased from about 10 to $15\mutextrm{m}$ in the powder milled for 24 hours. Increasing the milling time to 72 hours resulted in the formation of a thicker and more uniform Zone A layer, whose thickness increased to about $30~50\mutextrm{m}$. The TEM micrograph of ball milled powder for 200 hours shows formation of nano-particles, less than 20 nm in size, embedded in an Al matrix.

Keywords

References

  1. Internat. Mater. Rev. v.43 B. S. Murty;S. Ranganathan https://doi.org/10.1179/imr.1998.43.3.101
  2. Bibliography on Mechanical Alloying and Milling C. Suryanarayana
  3. Metals & Materials v.2 C. Suryanarayana https://doi.org/10.1007/BF03026094
  4. Rapidly Solidified Alloys, Processes, Structures, Properties, Applications H. H. Liebermann
  5. Rapidly Solidified Alloys, A Technological Overview T.R. Anantharaman;C. Suryanarayana
  6. Mechanical Alloying L. Lu;M.O. Lai
  7. Mater. Trans. v.32 Y.H. Kim;A. Inoue;T. Masumoto https://doi.org/10.2320/matertrans1989.32.331
  8. Jpn. J. Appl. Phys. v.27 A. Inoue;K. Ohtera;A. P. Tsai;T. Masumoto https://doi.org/10.1143/JJAP.27.L280
  9. Mater. Trans. v.36 K. Higashi;T. Mukai;A. Uoya;;A. Inoue;T. Masumoto https://doi.org/10.2320/matertrans1989.36.1467
  10. Jpn. J. Appl. Phys. v.27 A. Inoue;K. Ohtera;A. P. Tsai;T. Masumoto https://doi.org/10.1143/JJAP.27.L479
  11. Scripta Metall. Mater. v.25 H. Chen;Y. He;G. J. Shiflet;S. J. Poon https://doi.org/10.1016/0956-716X(91)90426-2
  12. Mater. Sci. Eng. v.A179;180 K. Otera;K. Kita;H. Nagahama;A. Inoue;T. Masumoto
  13. Mater. Sci. Eng. v.A304-306 S. J. Hong;P. J. Warren;B. S. Chun
  14. Mater. Sci. Eng. (in press) S. J. Hong;B. S. Chun
  15. Scripta Mater. v.45 S. J. Hong;B. S. Chun https://doi.org/10.1016/S1359-6462(01)01166-6
  16. Mater. Sci. Eng. v.A226-228 S. J. Hong;T. S. Kim;B. S. Chun
  17. Sci. American v.234 J. S. Benjamin
  18. ASM Handbook, Power Metal Technologies and Applications v.OH 7 C. Suryanarayana
  19. J. Mater. Sci. v.33 P- Y. Lee;J-L. Yang;H-M. Lin https://doi.org/10.1023/A:1004334805505
  20. Mater. Sci. Eng. v.5 H. Jones https://doi.org/10.1016/0025-5416(69)90077-9
  21. NanoStructured Mater. v.2 C.C. Koch https://doi.org/10.1016/0965-9773(93)90016-5
  22. NanoStructured Mater. v.9 C.C. Koch https://doi.org/10.1016/S0965-9773(97)00014-7
  23. Heat Resistant Materials v.OH C. Suryanarayana;F.H. Froes;K. Natesan( ed.);D. J. Tillack(ed.)