Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.6.361

Effect of Mo and Mn Addition on the Oxidation Behavior of Binary Ti-Al Alloys  

Han, Chang-Suk (Department of ICT Automotive Engineering, Hoseo University)
Jin, Sung-Yooun (Department of ICT Automotive Engineering, Hoseo University)
Bang, Hyo-In (Department of ICT Automotive Engineering, Hoseo University)
Publication Information
Korean Journal of Materials Research / v.28, no.6, 2018 , pp. 361-364 More about this Journal
Abstract
Binary Ti-Al alloys below 51.0 mass%Al content exhibit a breakaway, transferring from parabolic to linear rate law. The second $Al_2O_3$ layer might have some protectiveness before breakaway. Ti-63.1 mass%Al oxidized at 1173 K under parabolic law. Breakaway oxidation is observed in every alloy, except for Ti-63.1 mass%Al. After breakaway, oxidation rates of the binary TiAl alloys below 34.5 mass%Al obey almost linear kinetics. The corrosion rate of Ti-63.1 mass%Al appears to be almost parabolic. As content greater than 63.0 mass% is found to be necessary to form a protective alumina film. Addition of Mo improves the oxidation resistance dramatically. No breakaway is observed at 1123 K, and breakaway is delayed by Mo addition at 1173 K. At 1123 K, no breakaway, but a parabolic increase in mass gain, are observed in the Mo-added TiAl alloys. The binary Ti-34.5 mass%Al exhibits a transfer from parabolic to linear kinetics. At 1173 K, the binary alloys show vary fast linear oxidation and even the Mo-added alloys exhibit breakaway oxidation. The 2.0 mass%Mo-added TiAl exhibits a slope between linear and parabolic. At values of 4.0 and 6.0 mass% added TiAl alloys, slightly larger rates are observed than those for the parabolic rate law, even after breakaway. On those alloys, the second $Al_2O_3$ layer appears to be persistently continuous. Oxidation resistance is considerably degraded by the addition of Mn. Mn appears to have the effect of breaking the continuity of the second $Al_2O_3$ layer.
Keywords
intermetallics; casting; oxidation; scanning electron microscopy; Ti-Al alloy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. S. Han, Asian J. Chem., 28, 374 (2016).   DOI
2 C. S. Han and S. Y. Lim, Korean J. Mater. Res. 26, 13 (2016).
3 C. S. Han and S. W. Kim, Korean J. Mater. Res. 27, 367 (2017).   DOI
4 Y. J. Xi, Y. J. Liu, Z. X. Wang, and J. B. Liu, Anti-Corros. Methods Mater., 59, 178 (2012).   DOI
5 S. Zeng, A. Zhao, and H. Jiang, Appl. Surf. Sci., 332, 362 (2015).   DOI
6 Z. Tang, F. Wang, and W. Wu, Mater. Sci. Eng., A, 276, 70 (2000).   DOI
7 A. Donchev, M. Galetz, and M. Schutze, Mater. Sci. Forum, 783/786, 1117 (2014).   DOI
8 C. Zhou, F. P. Zeng, B. Liu, Y. Liu, K. Zhao, J. Lu, C. Qiu, J. Li, and Y. He, Mater. Trans., 57, 461 (2016).   DOI
9 Y. W. Kim and S. L. Kim, Intermetallics, 53, 92 (2014).   DOI
10 X. W. Zhang, C. L. Zhu, H. X. Li, and J. Zhang, J. Aero. Mater., 34, 11 (2014).
11 J. Wang, L. Kong, J. Wu, T. Li, and T. Xiong, Appl. Surf. Sci., 356, 827 (2015).   DOI
12 J. P. Lin, L. L. Zhao, G. Y. Li, L. Q. Zhang, X. P. Song, F. Ye and, G. L. Chen, Intermetallics, 19, 131 (2011).   DOI
13 T. Yao, Y. Liu, B. Liu, M. Song, K. Zhao, W. Zhang, and Y. He, Surf. Coat. Technol., 277, 210 (2015).   DOI
14 X. Y. Li, S. Taniguchi, Y. C. Zhu, K. Fujita, N. Iwamoto, Y. Matsunaga, and K. Nakagawa, Nucl. Instrum. Methods Phys. Res., Sect. B, 187, 207 (2002).   DOI
15 M. Yoshihara and K. Miura, Intermetallics, 3, 357 (1995).   DOI
16 R. Pflumm, A. Donchev, S. Mayer, H. Clemens, and M. Schutze, Intermetallics, 53, 45 (2014).   DOI
17 X. Liu, K. You, Z. Wang, M. Zhang, and Z. He, Vacuum, 89, 209 (2013).   DOI
18 Y. Wu and S. K. Hwang, Mater. Lett., 58, 2067 (2004).   DOI
19 Y. Wu, S. K. Hwang, and Y. Umakoshi, Mater. Trans., 45, 1272 (2004).   DOI
20 Y. Wu, S. K. Hwang, K. Hagihara, and Y. Umakoshi, Intermetallics, 14, 9 (2006).   DOI