Acknowledgement
Supported by : National Natural Science Foundation of China, Air Force Engineering University
References
- Abdelmseeh, V.A., Jofriet, J. and Hayward, G. (2008), "Sulphate and sulphide corrosion in livestock buildings, part I: Concrete deterioration", Biosyst. Eng., 99(3), 372-381. https://doi.org/10.1016/j.biosystemseng.2007.11.002
- Chen, J.K., Jiang, M.Q. and Zhu, J. (2008), "Damage evolution in cement mortar duo to erosion of sulphate", Corros. Sci., 50(9), 2478-2483. https://doi.org/10.1016/j.corsci.2008.05.021
- Chindaprasirt, P. and Chalee, W. (2014), "Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site", Constr. Build. Mater., 63, 303-310. https://doi.org/10.1016/j.conbuildmat.2014.04.010
- Cho, H.C., Lee, D.H., Ju, H., Kang, S.K., Kim, K.H. and Monteiro, P.J.M. (2015), "Remaining service life estimation of reinforced concrete buildings based on fuzzy approach", Comput. Concrete, 15(6), 879-902. https://doi.org/10.12989/cac.2015.15.6.879
- Clifton, J.R. and Ponnersheim, J.M. (1994), Sulfate Attack of Cementitious Materials: Volumetric Relations and Expansions, NIST IR, 5390.
- Cohen, M.D. and Mather, B. (1991), "Sulfate attack on concrete: Research needs", ACI Mater. J., 88(1), 62-69.
- Crammond, N.J. (2003), "The thaumasite form of sulfate attack in the UK", Cement Concrete Comp., 25(8), 809-818. https://doi.org/10.1016/S0958-9465(03)00106-9
- Dallaire, E., Aitein, P.C. and Laehemi, M. (1997), An Example of the Use of Reactive Powder Concrete: The Sherbrooke Pedestrian Bikeway Bridge, Technology Transfer Day: The Specifications and Use of HPC, Toronto, Canada.
- Deby, F., Carcasses, M. and Sellier, A. (2009), "Robabilistic approach for durability design of reinforced concrete in marine environment", Cement Concrete Res., 39(5), 466-471. https://doi.org/10.1016/j.cemconres.2009.03.003
- Fei, F.L., Hu, J., Wei, J.X., Yu, Q.J. and Chen, Z.S. (2014), "Corrosion performance of steel reinforcement in simulated concrete pore solutions in the presence of imidazoline quaternary ammonium salt corrosion inhibitor", Constr. Build. Mater., 70, 43-53. https://doi.org/10.1016/j.conbuildmat.2014.07.082
- Frew, D.J., Forrestal, M.J. and Chen, W. (2002), "Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar", Exp. Mech., 42(1), 93-106. https://doi.org/10.1007/BF02411056
- Gama, B.A. (2014), Split Hopkinson Pressure Bar Technique: Experiments, Analyses and Applications.
- Gao, J., Yu, Z., Song, L., Wang, T. and Wei, S. (2013), "Durability of concrete exposed to sulfate attack under flexural loading and drying-wetting cycles", Constr. Build. Mater., 39, 33-38. https://doi.org/10.1016/j.conbuildmat.2012.05.033
- Grote, D.L., Park, S.W. and Zhou, M. (2001), "Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization", J. Impact. Eng., 25(9), 869-886. https://doi.org/10.1016/S0734-743X(01)00020-3
- Hossain, K.M.A. and Lachemi, M. (2006), "Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment", Cement Concrete Res., 36(6), 1123-1133. https://doi.org/10.1016/j.cemconres.2006.03.010
- Jin, F., Jiang, M. and Gao, X. (2004), "Defining damage variable based on energy dissipation", Chin. J. Rock Mech. Eng., 23(12), 1976-1980.
- Labuz, J.F. and Dai, S.T. (2000), "Residual strength and fracture energy from plane-strain testing", J. Geotech. Geoenviron. Eng., 126(10), 882-889. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:10(882)
- Li, W.M. and Xu, J.Y. (2009), "Pulse shaping techniques for largediameter split hopkinson pressure bar test", Acta Armamentarii, 30(3), 350-355.
- Lu, F., Forrestal, M.J., Chen, W. and Frew, D.J. (2002), "Dynamic compression testing of soft materials", J. Appl. Mech., 69(3), 214-223. https://doi.org/10.1115/1.1464871
- Ravichandran, G. and Subhash, G. (1994), "Critical appraisal of limiting strain rates for compression testing of ceramics in a split hopkinson pressure bar", J. Am. Ceram. Soc., 77(1), 263-267. https://doi.org/10.1111/j.1151-2916.1994.tb06987.x
- Ross, C.A., Jerome, D.M., Tedesco, J.W. and Hughes, M.L. (1996), "Moisture and strain rate effects on concrete strength", ACI Mater. J., 93(3), 293-300.
- Roventi, G., Bellezze, T., Giuliani, G. and Conti, C. (2014), "Corrosion resistance of galvanized steel reinforcements in carbonated concrete: Effect of wet-dry cycles in tap water and in chloride solution on the passivating layer", Cement Concrete Res., 65, 76-84. https://doi.org/10.1016/j.cemconres.2014.07.014
- Sharmila, P. and Dhinakaran, G. (2015), "Strength and durability of ultra fine slag based high strength concrete", Struct. Eng. Mech., 55(3), 675-686. https://doi.org/10.12989/sem.2015.55.3.675
- Song, H. and Chen, J. (2011), "Effect of damage evolution on poisson's ratio of concrete under sulfate attack", Acta Mech. Sol. Sin., 24(3), 209-215. https://doi.org/10.1016/S0894-9166(11)60022-0
- Song, Z., Jiang, L. and Zhang, Z. (2017), "Chloride diffusion in concrete associated with single, dual and multi cation types", Comput. Concrete, 17(1), 53-66. https://doi.org/10.12989/cac.2016.17.1.053
- Steinberg, E. (2009), "Structural reliability of prestressed UHPC Flexure models for bridge girders", J. Brid. Eng., 15(1), 65-72. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000039
- Su, H. and Xu, J. (2013), "Dynamic compressive behavior of ceramic fiber reinforced concrete under impact load", Constr. Build. Mater., 45, 306-313. https://doi.org/10.1016/j.conbuildmat.2013.04.008
- Suryavanshi, A.K. and Swamy, R.N. (1996), "Stability of friedel's salt in carbonated concrete structural elements", Cement Concrete Res., 26(5), 729-741. https://doi.org/10.1016/S0008-8846(96)85010-1
- Tanyildizi, H. (2017), "Prediction of compressive strength of lightweight mortar exposed to sulfate attack", Comput. Concrete, 19(2), 217-226. https://doi.org/10.12989/cac.2017.19.2.217
- Turkmen, I. and Gavgali, M. (2003), "Influence of mineral admixtures on the some properties and corrosion of steel embedded in sodium sulfate solution of concrete", Mater. Lett., 57(21), 3222-3233. https://doi.org/10.1016/S0167-577X(03)00039-9
- Uysal, M., Yilmaz, K. and Ipek, M. (2012), "The effect of mineral admixtures on mechanical properties, chloride ion permeability and impermeability of self-compacting concrete", Constr. Build. Mater., 27(1), 263-270. https://doi.org/10.1016/j.conbuildmat.2011.07.049
- William, G.H. and Bryant, M. (1999), ""sulfate attack," or is it?", Cement Concrete Res., 29(5), 789-791. https://doi.org/10.1016/S0008-8846(99)00068-X
- Yang, K.H., Cheon, J.H. and Kwon, S.J. (2017), "Modeling of chloride diffusion in concrete considering wedge-shaped single crack and steady-state condition", Comput. Concrete, 19(2), 211-216. https://doi.org/10.12989/cac.2017.19.2.211
- Ye, H., Jin, X., Chen, W., Fu, C. and Jin, N. (2017), "Prediction of chloride binding isotherms for blended cements", Comput. Concrete, 17(5), 683-702.
- Yin, G., Zuo, X., Tang, Y., Ayinde, O. and Ding, D. (2017), "Modeling of time-varying stress in concrete under axial loading and sulfate attack", . https://doi.org/10.12989/cac.2017.19.2.143
- Yoon, I.S. and Nam, J.W. (2017), "New experiment recipe for chloride penetration in concrete under water pressure", Comput. Concrete, 17(2), 189-199. https://doi.org/10.12989/CAC.2016.17.2.189
- Zhou, X.Q. and Hao, H. (2008), "Modelling of compressive behaviour of concrete-like materials at high strain rate", J. Sol. Struct., 45(17), 4648-4661. https://doi.org/10.1016/j.ijsolstr.2008.04.002
- Zuo, X., Wang, J., Sun, W., Li, H. and Yin, G. (2017), "Numerical investigation on gypsum and ettringite formation in cement pastes subjected to sulfate attack", Comput. Concrete, 19(1), 19-31. https://doi.org/10.12989/cac.2017.19.1.019
Cited by
- Damage Constitutive Model and Mechanical Performance Deterioration of Concrete under Sulfate Environment vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/3526590