• 제목/요약/키워드: Continuous Current Mode(CCM)

검색결과 48건 처리시간 0.022초

Modulated Carrier Control for Interleaved Continuous Conduction Mode(CCM) Boost Power Factor Correction Converter

  • Kim, Hye-jin;Choi, Kyu-sik;Cho, B.H.;Choi, Hang-seok
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.195-196
    • /
    • 2012
  • In recent years, in an effort to improve the efficiency and the power density of the front-end power factor correction(PFC), the interleaving of multiple converter is employed. The conventional interleaved continuous conduction mode(CCM) boost PFC converter requires input and output voltage sensing and three current sensing to obtain current balancing between modules. In this paper, the interleaved CCM PFC converter based on modulated carrier control is proposed. With the proposed method, two phase interleaved PFC can be realized simply without line voltage sensing resistor and can achieve current balancing without additional current sensing resistor on common return path. The simulation studies are carried out to verify the effectiveness of the proposed control scheme.

  • PDF

Effects of Imperfect Sinusoidal Input Currents on the Performance of a Boost PFC Pre-Regulator

  • Cheung, Martin K.H.;Chow, Martin H.L.;Lai, Y.M.;Loo, K.H.
    • Journal of Power Electronics
    • /
    • 제12권5호
    • /
    • pp.689-698
    • /
    • 2012
  • This paper investigates the effects of applying different input current waveshapes on the performance of a continuous-conduction-mode (CCM) power-factor-correction (PFC) boost pre-regulator. It is found that the output voltage ripple of the pre-regulator can be reduced if the input current is modified to include controlled amount of higher order harmonics. This finding allows us to balance the performance of output regulation and the harmonic current emission when coming to the design of the pre-regulator. An experimental PFC boost pre-regulator prototype is constructed to verify the analysis and show the benefit of the pre-regulator operating with input current containing higher order harmonics.

역률 개선을 위한 승압형 컨버터에 대한 연구 (A Study on Boost Converter for Power Factor Correction)

  • 이철환;김동운;이상집;성낙규;이승환;오봉환;한경희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1052-1054
    • /
    • 2001
  • This paper describes a boost converter to be operated at the boundary of continuous current mode(CCM) and discontinuous current mode(DCM) for power factor correction and low cost. A control method to be utilized in simulation is a average-current mode method in case of operating in CCM. The simulation results show that Better is the CCM converter then the DCM converter in harmonic content and input current waveform. And A Double-boost converter is superior to single-boost converter for input-current harmonic.

  • PDF

승압형 컨버터를 이용한 역률개선에 관한 연구 (A Study on Power Factor for Correction Boost Converter)

  • 이훈구;오봉환;이승환;전기영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.14-16
    • /
    • 2004
  • This paper describes a boost converter to be operated at the boundary of continuous current mode(CCM) and discontinuous current mode(DCM) for power factor correction and low cost. A control method to be utilized in simulation is a average Current mode method in case of operating in CCM. The simulation results show that Better is the CCM converter then the DCM converter in harmonic content and input current waveform. And A Double-boost converter is superior to single-boost converter for input-current harmonic.

  • PDF

Characteristics of a High Power Factor Boost Converter with Continuous Current Mode Control

  • Kim, Cherl-Jin;Jang, Jun-Young
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권2호
    • /
    • pp.65-72
    • /
    • 2004
  • Switching power supply systems are widely used in many industrial fields. Power factor correction (PFC) circuits have a tendency to be applied in new power supply designs. The input active power factor correction (APFC) circuits can be implemented in either the two-stage approach or the single-stage approach. The two-stage approach can be classified into boost type PFC circuit and dc/dc converter. The power factor correction circuit with a boost converter used as an input power source is studied in this paper. In a boost power factor correction circuit there are two feedback control loops, which are a current feedback loop and a voltage feedback loop. In this paper, the regulation performance of output voltage and compensator to improve the transient response presented at the continuous conduction mode (CCM) of the boost PFC circuit is analyzed. The validity of designed boost PFC circuit is confirmed by MATLAB simulation and experimental results.

입력전압을 감지하지 않는 전류연속/임계동작모드 Active Power Factor Correction Circuit (A Continuous Conduction mode/Critical Conduction Mode Active Power Factor Correction Circuit with Input Voltage Sensor-less Control)

  • 노용성;유창식
    • 전자공학회논문지
    • /
    • 제50권8호
    • /
    • pp.151-161
    • /
    • 2013
  • 본 논문에서는 입력전압을 감지하지 않는 전류연속/임계동작모드 active power factor correction(PFC) circuit을 제안하였다. 기존의 입력전압을 감지하지 않는 PFC circuit의 경우 출력전류가 낮은 경 부하 조건에서 DCM 동작을 수행하고, 이에 따라 PF가 감소하는 문제가 발생한다. 제안한 PFC circuit은 70KHz의 주파수로 CCM 동작을 수행하고, 경 부하 조건에서 최대 200KHz까지 스위칭 주파수가 가변되는 CRM 동작을 수행하도록 하였다. 이를 통해 경 부하 조건에서 PF가 감소하는 문제를 해결하였다. PFC controller IC는 $0.35{\mu}m$ BCDMOS 공정을 이용하여 제작하였으며, 240W급 PFC prototype을 제작하여 실험하였다. 제안한 PFC circuit은 기존의 PFC circcuit 대비 최대 10%의 역률이 향상되었고, IEC 61000-3-2 Class D 규격에 따른 경 부하 조건에서는 최대 4% 역률이 향상되었다.

Continuous Conduction Mode Soft-Switching Boost Converter and its Application in Power Factor Correction

  • Cheng, Miao-miao;Liu, Zhiguo;Bao, Yueyue;Zhang, Zhongjie
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1689-1697
    • /
    • 2016
  • Continuous conduction mode (CCM) boost converters are commonly used in home appliances and various industries because of their simple topology and low input current ripples. However, these converters suffer from several disadvantages, such as hard switching of the active switch and reverse recovery problems of the output diode. These disadvantages increase voltage stresses across the switch and output diode and thus contribute to switching losses and electromagnetic interference. A new topology is presented in this work to improve the switching characteristics of CCM boost converters. Zero-current turn-on and zero-voltage turn-off are achieved for the active switches. The reverse-recovery current is reduced by soft turning-off the output diode. In addition, an input current sensorless control is applied to the proposed topology by pre-calculating the duty cycles of the active switches. Power factor correction is thus achieved with less effort than that required in the traditional method. Simulation and experimental results verify the soft-switching characteristics of the proposed topology and the effectiveness of the proposed input current sensorless control.

단상 브리지리스 배전압 변환기의 역률 개선에 관한 연구 (A Study on the Power Factor Improvement of Single-Phase Bridgeless Voltage Doubler Converter)

  • 구도연;김동욱;임승범;홍순찬
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 추계학술대회
    • /
    • pp.169-170
    • /
    • 2011
  • PFC(Power Factor Correction) converters are commonly designed for CCM(Continuous Conduction Mode). However, DCM(Discontinuous Conduction Mode) appears in the input current near the ZCP(Zero Crossing Point) at light loads, resulting in input current distortion. It is caused by inaccurate average current values obtained in DCM. This paper studies a simple digital control scheme that can be operated in both CCM and DCM with minimal changes to the CCM average current control structure.

  • PDF

Compensation Technique for Current Sensorless Digital Control of Bridgeless PFC Converter under Critical Conduction Mode

  • Kim, Tae-Hun;Lee, Woo-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2310-2318
    • /
    • 2018
  • Critical conduction mode (CRM) operation is more efficient than continuous conduction mode (CCM) operation at low power levels because of the valley switching of switches and elimination of the reverse recovery losses of boost diodes. When using a sensorless digital control method, an error occurs between the actual and the estimated current. Because of the error, it operates as CCM or discontinuous conduction mode (DCM) during CRM operation and also has an adverse effect on THD of input current. In this paper, a current sensorless technique is presented in an inverter system using a bridgeless boosted power factor correction converter, and a compensation method is proposed to reduce CRM calculation error. The validity of the proposed method is verified by simulation and experiment.

Analysis, Design, and Implementation of a Single-Phase Power-Factor Corrected AC-DC Zeta Converter with High Frequency Isolation

  • Singh, Bhim;Agrawal, Mahima;Dwivedi, Sanjeet
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권2호
    • /
    • pp.243-253
    • /
    • 2008
  • This paper deals with the analysis, design, and implementation of a single phase AC-DC Zeta converter with high frequency transformer isolation and power factor correction(PFC) in two modes of operation, discontinuous current mode of operation(DCM), and continuous current mode of operation(CCM). A Digital Signal Processor(DSP) based implementation is carried out for validation of the Zeta converter developed design in discontinuous mode of operation. A comparison of both modes of operation is presented for a 1kW power rating from the point of view of steady state and dynamic behavior, power quality, simplicity, control technique, device rating, and converter size. The experimental results of a developed prototype of Zeta converter are presented for validation of the developed design. It is observed that CCM is most suitable for higher power applications where it requires some complex control and sensing of the additional variables.