Proceedings of the Korean Information Science Society Conference
/
2003.10a
/
pp.589-591
/
2003
현재 대부분 e-Learning에서 이루어지고 있는 교육은 학습(Loaming)이 아닌 단순 훈련(Trainning)만이 이루어지고 있다. e-Learning에서 진정한 학습이 이루어지기 위해서는 학습자의 수준에 맞는 적응적(Adaptive), 적시적(Just-in-Time) 학습이 단편적이 아닌 연속적, 통합적으로 이루어져야 한다. 이를 위해서는 기술적 관점뿐만 아니라, 발견적 학습(heuristic learning)관점에서 학습자원이 기술되고, 컴퓨터(에이전트)가 학습자원의 구성요소인 학습목표(Goal), 학습내용(Content), 학습맥락(Context), 학습구조(Structure), 학습전략(Strategy)의 의미(Semantic)와 관계(Relation)를 이해해 학습자에게 필요한 정보만을 검색, 추론해주고 이를 학습자 수준에 맞게 재가공해 학습자에게 지식(Knowledge)을 적응적(Adaptive), 적시적(Just-in-Time)으로 전달해주는 e-Learning 학습 환경이 필수적이다. 메타데이터(RDF), 온톨로지(Ontology), 에이전트(Agent) 매커니즘의 시멘틱 웹을 e-Learning 환경에 적용함으로써 학습자원의 구성요소의 의미와 관계를 파악해 적응적(Adaptive)으로 지식을 전달해 주어 자기 주도적 학습(Self-directed Loaming)을 실현해 줄 수 있다.
This paper discusses designing an interdisciplinary learning environment to promote learning of the liberal arts for advanced music students in order to expand the boundaries of their education experience beyond the technical mastery of their musical instruments. The paper discusses the utilization of salient features of information, communications, and technology and the use of instructional theory to promote the understanding of how individual pieces of music can be connected to knowledge of the context in which they were created to support the understanding of the relationship between experience in the world and musical composition.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.5
no.4
/
pp.180-185
/
2012
Social Learning is a new study model of future knowledge information society. In different existing study, it concentrate on relationship with others and design to connect studying with social effect as a study platform using social media such as Blog, SNS, UCC, Microblog. In my paper, social learning characteristics are described to understand social learning, that is 3 keyword such as context, connectivity, collaboration. Also we investigate social media characteristics and social media how to be used social learning. Also social learning system building method using facebook is presented.
Journal of Fisheries and Marine Sciences Education
/
v.27
no.4
/
pp.1160-1171
/
2015
The purpose of this study is to design and develop a computer based learning and test system, which supports not only testing learner's ability but also learning contents with giving feedback and hint. In order to design and develop a computer based learning and test system, Visual Basic dot Net software is used. The system works in three stages: sequential problem solving stage, randomized problem solving stage, and the challenge stage of pass/fail. The results of this study are as follows: (a) We propose the context of design for the computer based learning and test system. (b) We design and develop items display function with sequential and random algorithm in this system. (c) We design and develop pass/fail function by applying SPRT(Sequential Probability Ratio Testing) algorithm in the computer based learning and test system.
Nguyen, Trong–Nghia;Kim, Soo Hyung;Do, Nhu-Tai;Hong, Thai-Thi Ngoc;Yang, Hyung Jeong;Lee, Guee Sang
Smart Media Journal
/
v.11
no.2
/
pp.39-52
/
2022
In the context of the evolution of automation and intelligence, deep learning and machine learning algorithms have been widely applied in aquaculture in recent years, providing new opportunities for the digital realization of aquaculture. Especially, water quality management deserves attention thanks to its importance to food organisms. In this study, we proposed an end-to-end deep learning-based TabNet model for water quality prediction. From major indexes of water quality assessment, we applied novel deep learning techniques and machine learning algorithms in innovative fish aquaculture to predict the number of water cells counting. Furthermore, the application of deep learning in aquaculture is outlined, and the obtained results are analyzed. The experiment on in-house data showed an optimistic impact on the application of artificial intelligence in aquaculture, helping to reduce costs and time and increase efficiency in the farming process.
Malware detection has become increasingly critical with the proliferation of end devices. To improve detection rates and efficiency, the research focus in malware detection has shifted towards leveraging machine learning and deep learning approaches. This shift is particularly relevant in the context of the widespread adoption of end devices, including smartphones, Internet of Things devices, and personal computers. Machine learning techniques are employed to train models on extensive datasets and evaluate various features, while deep learning algorithms have been extensively utilized to achieve these objectives. In this research, we introduce TabNet, a novel architecture designed for deep learning with tabular data, specifically tailored for enhancing malware detection techniques. Furthermore, the Synthetic Minority Over-Sampling Technique is utilized in this work to counteract the challenges posed by imbalanced datasets in machine learning. SMOTE efficiently balances class distributions, thereby improving model performance and classification accuracy. Our study demonstrates that SMOTE can effectively neutralize class imbalance bias, resulting in more dependable and precise machine learning models.
In order to facilitate the process of designing a fusion curriculum, this study used the learning outcomes presented in KEC2015 to design a fusion goal dimension. The three dimensions of fusion education in the fusion curriculum framework are fusion goals, fusion approach and fusion context. As a result of examining the curriculum learning activities in order to confirm that the developed curriculum meets these three dimensions, it can be confirmed that it contributes relatively evenly to the fusion goal, fusion approach and fusion context dimension. In addition, it provides a procedure to develop the fusion curriculum through the concrete procedures and examples from the design to implementation of the developed fusion curriculum, and to confirm the result of the fusion dimension.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.501-503
/
2022
본 논문은 이동 노드간 클러스터링을 함에 있어 보다 효율적인클러스터링을 제공하고 유지하기 위한 딥러닝의 자율학습에 따른 군집적 알고리즘을 제안한다. 대부분의 클러스터링 군집데이터를 처리함에 있어 상호관계에 따른 분류체계가 제공된다. 이러한 경우 새롭게 입력되거나 변경된 데이터가 비교정보에서 오염된 정보로 분류될 경우 기존 분류된 클러스터링으로부터 오염된 정보로 이해되어 군집성을 저하시키는 요인으로 작용 할 수가 있다. 본 논문에서는 이러한 상황정보를 이해하고 클러스터링을 유지할 수 있는 자율학습기반의 학습 모델을 제시 한다.
Min-Kyo Jung;Beomseok Hong;Wonseok Choi;Youngsub Han;Byoung-Ki Jeon;Seung-Hoon Na
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.275-280
/
2023
문서 그라운딩된 대화 시스템의 응답 성능 개선을 위한 방법론을 제안한다. 사전 학습된 거대 언어 모델 LLM(Large Language Model)인 Llama2 모델에 Zero-Shot In-Context learning을 적용하여 대화 마지막 유저 질문에 대한 응답을 생성하는 태스크를 수행하였다. 본 연구에서 제안한 응답 생성은 검색된 top-1 문서와 대화 기록을 참조해 초기 응답을 생성하고, 생성된 초기 응답을 기반으로 검색된 문서를 대상으로 재순위화를 수행한다. 이 후, 특정 순위의 상위 문서들을 이용해 최종 응답을 생성하는 과정으로 이루어진다. 검색된 상위 문서를 이용하는 응답 생성 방식을 Baseline으로 하여 본 연구에서 제안한 방식과 비교하였다. 그 결과, 본 연구에서 제안한 방식이 검색된 결과에 기반한 실험에서 Baseline 보다 F1, Bleu, Rouge, Meteor Score가 향상한 것을 확인 하였다.
Taegeon Kim;Seokhwan Kim;Minkyu Koo;Minwoo Jeong;Hongjo Kim
International conference on construction engineering and project management
/
2024.07a
/
pp.415-422
/
2024
Recent advances in construction automation have led to increased use of deep learning-based computer vision technology for construction monitoring. However, monitoring systems based on supervised learning struggle with recognizing complex risk factors in construction environments, highlighting the need for adaptable solutions. Large multimodal models, pretrained on extensive image-text datasets, present a promising solution with their capability to recognize diverse objects and extract semantic information. This paper proposes a methodology that generates training data for multimodal models, including safety-centric descriptions using GPT-4V, and fine-tunes the LLaVA model using the LoRA method. Experimental results from seven construction site hazard scenarios show that the fine-tuned model accurately assesses safety status in images. These findings underscore the proposed approach's effectiveness in enhancing construction site safety monitoring and illustrate the potential of large multimodal models to tackle domain-specific challenges.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.