• Title/Summary/Keyword: Context-learning

Search Result 1,201, Processing Time 0.025 seconds

A Study on Application of Semantic Web for e-Learning (시멘틱 웹의 e-Learning 적용에 대한 연구)

  • 정의석;김현철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.589-591
    • /
    • 2003
  • 현재 대부분 e-Learning에서 이루어지고 있는 교육은 학습(Loaming)이 아닌 단순 훈련(Trainning)만이 이루어지고 있다. e-Learning에서 진정한 학습이 이루어지기 위해서는 학습자의 수준에 맞는 적응적(Adaptive), 적시적(Just-in-Time) 학습이 단편적이 아닌 연속적, 통합적으로 이루어져야 한다. 이를 위해서는 기술적 관점뿐만 아니라, 발견적 학습(heuristic learning)관점에서 학습자원이 기술되고, 컴퓨터(에이전트)가 학습자원의 구성요소인 학습목표(Goal), 학습내용(Content), 학습맥락(Context), 학습구조(Structure), 학습전략(Strategy)의 의미(Semantic)와 관계(Relation)를 이해해 학습자에게 필요한 정보만을 검색, 추론해주고 이를 학습자 수준에 맞게 재가공해 학습자에게 지식(Knowledge)을 적응적(Adaptive), 적시적(Just-in-Time)으로 전달해주는 e-Learning 학습 환경이 필수적이다. 메타데이터(RDF), 온톨로지(Ontology), 에이전트(Agent) 매커니즘의 시멘틱 웹을 e-Learning 환경에 적용함으로써 학습자원의 구성요소의 의미와 관계를 파악해 적응적(Adaptive)으로 지식을 전달해 주어 자기 주도적 학습(Self-directed Loaming)을 실현해 줄 수 있다.

  • PDF

Designing an Interdisciplinary Learning Environment for Conservatory Students: Using the Liberal Arts to Expand Education and Better Support Performance Interpretation

  • Auh, Yoonil;Shin, Yeon Sook
    • International Journal of Contents
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 2014
  • This paper discusses designing an interdisciplinary learning environment to promote learning of the liberal arts for advanced music students in order to expand the boundaries of their education experience beyond the technical mastery of their musical instruments. The paper discusses the utilization of salient features of information, communications, and technology and the use of instructional theory to promote the understanding of how individual pieces of music can be connected to knowledge of the context in which they were created to support the understanding of the relationship between experience in the world and musical composition.

A Social Learning as Study Platform using Social Media (소셜 미디어를 학습플랫폼으로 활용한 소셜 러닝)

  • Cho, Byung-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.4
    • /
    • pp.180-185
    • /
    • 2012
  • Social Learning is a new study model of future knowledge information society. In different existing study, it concentrate on relationship with others and design to connect studying with social effect as a study platform using social media such as Blog, SNS, UCC, Microblog. In my paper, social learning characteristics are described to understand social learning, that is 3 keyword such as context, connectivity, collaboration. Also we investigate social media characteristics and social media how to be used social learning. Also social learning system building method using facebook is presented.

A Study on the Design and Development of Computer Based Learning and Test System (컴퓨터 평가 기반 학습 시스템 설계 및 개발 연구)

  • HEO, Gyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.4
    • /
    • pp.1160-1171
    • /
    • 2015
  • The purpose of this study is to design and develop a computer based learning and test system, which supports not only testing learner's ability but also learning contents with giving feedback and hint. In order to design and develop a computer based learning and test system, Visual Basic dot Net software is used. The system works in three stages: sequential problem solving stage, randomized problem solving stage, and the challenge stage of pass/fail. The results of this study are as follows: (a) We propose the context of design for the computer based learning and test system. (b) We design and develop items display function with sequential and random algorithm in this system. (c) We design and develop pass/fail function by applying SPRT(Sequential Probability Ratio Testing) algorithm in the computer based learning and test system.

A TabNet - Based System for Water Quality Prediction in Aquaculture

  • Nguyen, Trong–Nghia;Kim, Soo Hyung;Do, Nhu-Tai;Hong, Thai-Thi Ngoc;Yang, Hyung Jeong;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.39-52
    • /
    • 2022
  • In the context of the evolution of automation and intelligence, deep learning and machine learning algorithms have been widely applied in aquaculture in recent years, providing new opportunities for the digital realization of aquaculture. Especially, water quality management deserves attention thanks to its importance to food organisms. In this study, we proposed an end-to-end deep learning-based TabNet model for water quality prediction. From major indexes of water quality assessment, we applied novel deep learning techniques and machine learning algorithms in innovative fish aquaculture to predict the number of water cells counting. Furthermore, the application of deep learning in aquaculture is outlined, and the obtained results are analyzed. The experiment on in-house data showed an optimistic impact on the application of artificial intelligence in aquaculture, helping to reduce costs and time and increase efficiency in the farming process.

Enhancing Malware Detection with TabNetClassifier: A SMOTE-based Approach

  • Rahimov Faridun;Eul Gyu Im
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.294-297
    • /
    • 2024
  • Malware detection has become increasingly critical with the proliferation of end devices. To improve detection rates and efficiency, the research focus in malware detection has shifted towards leveraging machine learning and deep learning approaches. This shift is particularly relevant in the context of the widespread adoption of end devices, including smartphones, Internet of Things devices, and personal computers. Machine learning techniques are employed to train models on extensive datasets and evaluate various features, while deep learning algorithms have been extensively utilized to achieve these objectives. In this research, we introduce TabNet, a novel architecture designed for deep learning with tabular data, specifically tailored for enhancing malware detection techniques. Furthermore, the Synthetic Minority Over-Sampling Technique is utilized in this work to counteract the challenges posed by imbalanced datasets in machine learning. SMOTE efficiently balances class distributions, thereby improving model performance and classification accuracy. Our study demonstrates that SMOTE can effectively neutralize class imbalance bias, resulting in more dependable and precise machine learning models.

A Study on the Design of Fusion Education Program - Fusion of ME and Kinesiology - (융합 교과목 개발방법에 관한 연구 - 기계공학과 인간운동과학의 융합 -)

  • Lee, Kunsang
    • Journal of Engineering Education Research
    • /
    • v.21 no.1
    • /
    • pp.66-76
    • /
    • 2018
  • In order to facilitate the process of designing a fusion curriculum, this study used the learning outcomes presented in KEC2015 to design a fusion goal dimension. The three dimensions of fusion education in the fusion curriculum framework are fusion goals, fusion approach and fusion context. As a result of examining the curriculum learning activities in order to confirm that the developed curriculum meets these three dimensions, it can be confirmed that it contributes relatively evenly to the fusion goal, fusion approach and fusion context dimension. In addition, it provides a procedure to develop the fusion curriculum through the concrete procedures and examples from the design to implementation of the developed fusion curriculum, and to confirm the result of the fusion dimension.

Context-awareness Clustering with Adaptive Learning Algorithm (상황인식 기반 클러스터링의 적응적 자율 학습 분할 알고리즘)

  • Do, Yun-hyung;Jeong, Rae-jin;Jeon, Il-Kyu;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.501-503
    • /
    • 2022
  • 본 논문은 이동 노드간 클러스터링을 함에 있어 보다 효율적인클러스터링을 제공하고 유지하기 위한 딥러닝의 자율학습에 따른 군집적 알고리즘을 제안한다. 대부분의 클러스터링 군집데이터를 처리함에 있어 상호관계에 따른 분류체계가 제공된다. 이러한 경우 새롭게 입력되거나 변경된 데이터가 비교정보에서 오염된 정보로 분류될 경우 기존 분류된 클러스터링으로부터 오염된 정보로 이해되어 군집성을 저하시키는 요인으로 작용 할 수가 있다. 본 논문에서는 이러한 상황정보를 이해하고 클러스터링을 유지할 수 있는 자율학습기반의 학습 모델을 제시 한다.

  • PDF

LLaMA2 Models with Feedback for Improving Document-Grounded Dialogue System (피드백 기법을 이용한 LLama2 모델 기반의 Zero-Shot 문서 그라운딩된 대화 시스템 성능 개선)

  • Min-Kyo Jung;Beomseok Hong;Wonseok Choi;Youngsub Han;Byoung-Ki Jeon;Seung-Hoon Na
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.275-280
    • /
    • 2023
  • 문서 그라운딩된 대화 시스템의 응답 성능 개선을 위한 방법론을 제안한다. 사전 학습된 거대 언어 모델 LLM(Large Language Model)인 Llama2 모델에 Zero-Shot In-Context learning을 적용하여 대화 마지막 유저 질문에 대한 응답을 생성하는 태스크를 수행하였다. 본 연구에서 제안한 응답 생성은 검색된 top-1 문서와 대화 기록을 참조해 초기 응답을 생성하고, 생성된 초기 응답을 기반으로 검색된 문서를 대상으로 재순위화를 수행한다. 이 후, 특정 순위의 상위 문서들을 이용해 최종 응답을 생성하는 과정으로 이루어진다. 검색된 상위 문서를 이용하는 응답 생성 방식을 Baseline으로 하여 본 연구에서 제안한 방식과 비교하였다. 그 결과, 본 연구에서 제안한 방식이 검색된 결과에 기반한 실험에서 Baseline 보다 F1, Bleu, Rouge, Meteor Score가 향상한 것을 확인 하였다.

  • PDF

Large Multimodal Model for Context-aware Construction Safety Monitoring

  • Taegeon Kim;Seokhwan Kim;Minkyu Koo;Minwoo Jeong;Hongjo Kim
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.415-422
    • /
    • 2024
  • Recent advances in construction automation have led to increased use of deep learning-based computer vision technology for construction monitoring. However, monitoring systems based on supervised learning struggle with recognizing complex risk factors in construction environments, highlighting the need for adaptable solutions. Large multimodal models, pretrained on extensive image-text datasets, present a promising solution with their capability to recognize diverse objects and extract semantic information. This paper proposes a methodology that generates training data for multimodal models, including safety-centric descriptions using GPT-4V, and fine-tunes the LLaVA model using the LoRA method. Experimental results from seven construction site hazard scenarios show that the fine-tuned model accurately assesses safety status in images. These findings underscore the proposed approach's effectiveness in enhancing construction site safety monitoring and illustrate the potential of large multimodal models to tackle domain-specific challenges.