

Enhancing Malware Detection with TabNetClassifier: A
SMOTE-based Approach

Rahimov Faridun1, Eul Gyu Im2
1Dept. of Computer Science, Hanyang University
2Dept. of Computer Science, Hanyang University

farid01@hanyang.ac.kr, imeg@hanyang.ac.kr

Abstract
Malware detection has become increasingly critical with the proliferation of end devices. To improve

detection rates and efficiency, the research focus in malware detection has shifted towards leveraging machine
learning and deep learning approaches. This shift is particularly relevant in the context of the widespread adoption
of end devices, including smartphones, Internet of Things devices, and personal computers. Machine learning
techniques are employed to train models on extensive datasets and evaluate various features, while deep learning
algorithms have been extensively utilized to achieve these objectives. In this research, we introduce TabNet, a
novel architecture designed for deep learning with tabular data, specifically tailored for enhancing malware
detection techniques.

Furthermore, the Synthetic Minority Over-Sampling Technique is utilized in this work to counteract the
challenges posed by imbalanced datasets in machine learning. SMOTE efficiently balances class distributions,
thereby improving model performance and classification accuracy. Our study demonstrates that SMOTE can
effectively neutralize class imbalance bias, resulting in more dependable and precise machine learning models.

1. Introduction

Malware presents a significant threat to data integrity,
privacy, and operational continuity, underscoring the
importance of robust computer system and network
security in the digital era. The term "malware," short
for malicious software, encompasses a broad range of
software designed to damage or exploit networks,
services, or programmable devices. Developing
effective countermeasures necessitates a
comprehensive understanding of malware analysis.
This process involves examining a malware sample
to ascertain its functionality, origin, and potential
impact. Effective malware defense involves
deconstructing and analyzing malicious code to
understand its components, execution pathways, and
communication methods, with the aim of detecting,
mitigating, and ultimately preventing malware
attacks.
Malware analysis traditionally employs two principal
approaches: dynamic analysis, observing malware in
action, and static analysis, examining the malware
without execution [1]. While these methods have
achieved some success, they face challenges related
to scalability, evasion tactics employed by malware
authors, and the continuous emergence of new
malware variants daily. Consequently, there is a
pressing need for more advanced and adaptable
solutions to effectively counter these issues.
This introduces DL, a subset of ML characterized by
models trained to perform tasks based solely on text,
images, or audio data [2]. Deep learning models,
particularly those designed for structured data
analysis like the innovative TabNet architecture, offer

promising avenues for enhancing malware detection.
Unlike conventional ML models that often rely
heavily on extensive feature engineering, DL models
possess the innate ability to autonomously identify
complex patterns and relationships directly from the
data.
We introduce TabNet, a state-of-the-art deep neural
network (DNN) framework designed specifically for
tabular data analysis, featuring the following key
enhancements:

• TabNet simplifies the data preparation
process by directly handling raw tabular data,
eliminating the need for preprocessing.

• It employs training based on gradient descent,
which enhances learning efficiency and simplifies
integration into end-to-end learning pipelines.

• TabNet dynamically allocates computing
resources to the most significant features, thereby
improving interpretability. It does this by
selectively focusing on specific features at each
decision step through the application of sequential
attention.

2. Literature review

Recently, DL methods have been employed to develop
intelligent decision-making machines. Given the ever-
evolving nature of sophisticated malware threats, researchers
have devised various frameworks for malware detection. The
majority of these initiatives concentrate on creating solutions
for binary malware detection powered by artificial
intelligence.

The application of DL methods for malware classification

ASK 2024 학술발표대회 논문집 (31권 1호)

- 294 -

mailto:farid01@hanyang.ac.kr
mailto:imeg@hanyang.ac.kr

was examined by Olowoyo et al. [3]. By using a transfer
learning strategy and representing malware as images, they
are able to classify them with an average accuracy of 98.8%.

An RNN, LSTM, and GRU-based malware classification
model was presented by Chen Li et al. [4]. Their findings
demonstrated that the suggested RNN model, which analyzes
lengthy sequences of API calls, performs well in malware
classification.

The use of DL and ML in malware detection was
investigated by Rathore et al. [5]. They use supervised and
unsupervised learning methods, and they use opcode
frequency as a feature vector. The results showed that
Random Forest performed better than Deep Neural Networks
and that Deep Auto-Encoders perform better than Deep
Neural Networks.

Using API calls, Catak et al. [6] carried out study on
malware detection. They used LSTM, K-Nearest Neighbors
(KNN), Decision Trees (DT), and Support Vector Machines
(SVM) as part of their machine learning method and
contrasted shallow learning with deep learning algorithms.
Out of the eight malware classes in the dataset, LSTM had
the best accuracy and F1-score.

3. TabNet Architecture Overview

TabNet is a deep learning architecture [7] meticulously
devised for the nuanced domain of tabular data. It excels in
extracting intricate patterns and achieving interpretability, a
trait seldom seen in complex models. Below we detail the
architecture's core components:

The Encoder Architecture: As depicted in Figure 1a, the
TabNet encoder initiates by normalizing raw input features
through Batch Normalization (BN). This standardization
ensures consistent data flow throughout the network. The
encoder's architecture is segmented into several decision
stages, each responsible for a segment of the output. Within
these stages, two critical modules operate: The Feature
Transformer, executing non-linear transformations of the
data, and the Attentive Transformer, which dynamically
assigns weights to features. The model's predictive
capabilities are progressively enhanced by the data's divided
paths, which persist through subsequent decision steps and
cumulatively contribute to the final output.

The Decoder Architecture: In addition to the encoder's
role, the decoder, as shown in Figure 1b, is tasked with
reconstructing the input features. It enhances the encoding
stage by minimizing the reconstruction error, thereby
retaining the most informative features for the model's
predictions.

Feature Processing: As illustrated in Figure 1c, the
Feature Transformer architecture encompasses both shared
and step-dependent layers. The step-dependent layers
introduce flexibility and allow for fine-tuning at each
decision point, whereas the shared layers provide a stable

foundation for transformation across the model.
The Attentive Transformer with Prior Scales: A distinctive

feature of TabNet is its attentive transformer, which utilizes
prior scales to modulate attention across features, ensuring a
comprehensive method for feature selection. This
functionality is illustrated in Figure 1d.

<Fig. 1> Tabnet Architecture

TabNet's architecture employs a sequential, attention-driven
process to incrementally select and refine features, a process
depicted in Figure 1. This design enables instance-wise
feature selection, making it versatile across a wide range of
tabular data scenarios. Moreover, the architecture's decision-
making transparency stands out as a hallmark of its
interpretability.

4. METHODOLOGY

In this study, we examined the effectiveness of TabNet in
malware detection, a process that entails multiple steps
including data collection and the identification of malicious
software. Fig. 1 illustrates the system architecture of our
proposed technique.

<Fig. 1> Tabnet Architecture

We utilized TensorFlow, an open-source machine learning
library developed by Google, to construct our deep learning
models. TensorFlow's architecture is both versatile and
efficient, facilitating the construction and training of neural
networks. Utilizing its high-level Keras API allowed us to
rapidly and effortlessly build our models, while TabNet
calculations were implemented to expedite training. Our

ASK 2024 학술발표대회 논문집 (31권 1호)

- 295 -

investigation primarily focused on assessing the TabNet
model's effectiveness.

The Synthetic Minority Over-Sampling Technique
(SMOTE) represents an innovative method for addressing
unbalanced datasets, widely used in machine learning [8].
Unlike simple oversampling, SMOTE generates synthetic
samples from the minority class to balance class distribution,
thereby avoiding the repetition of minority class instances
and mitigating overfitting risks. SMOTE fosters the creation
of a more representative and varied dataset within the feature
space for classifier training by interpolating new instances
between existing minority samples. This approach enhances
the model's ability to generalize by offering a deeper insight
into the minority class's feature space.

4.1. Description of Dataset

The dataset used in this study consists of 138,047 PE
(Portable Executable) header samples, which are provided by
H. Rathore [5]. It includes 41,323 benign and 96,724
malware samples. The dataset is available on a GitHub
repository [9]. The SMOTE was employed to address the
class imbalance and enhance the representation of the
minority benign class in subsequent models. Detailed
statistics for the dataset are presented in Tab. 1.

<Tab. 1> Statistics of Dataset Before and After Balancing

Condition Sample Counts Total
Benign Malicious

Imbalanced 41,323 96,724 138,047
Balanced 96,724 96,724 193,448

4.2. EXPERIMENTAL SETUP

The studies were carried out on a computer system
equipped with an Intel64 Family 6 Model 165 Stepping 3
CPU and 16GB of RAM. No additional GPUs were used for
computations. The models were implemented and analyzed
in Python. Several major libraries were used in our research,
including NumPy for numerical computing, TensorFlow and
PyTorch for developing and training neural network models,
and Scikit-Learn and Pandas for data manipulation and
machine learning. This software stack provides a reliable and
adaptable computer environment for our experiments. Tab. 2
provides detailed hardware and software specifications.

<Tab. 2> System Specifications

Component Specification
CPU Intel Core i9-10900K (3.70 GHz) 9900K (9th Gen)
GPU NVIDIA GeForce RTX 2080 Ti
RAM 64GB - 3600 MHz
Language Python
Software NumPy, TensorFlow, Scikit-Learn, Pandas, PyTorch

4.1. Data Preprocessing
The datasets were subjected to crucial preprocessing steps

before the training of the model to enhance data quality and

focus:
• Check for missing value.
• Remove "Name" and "hash" columns.
• Normalization of features for training efficiency.

4.2. Data Split

The datasets were subjected to crucial preprocessing steps
before the training of the model to enhance data quality and
focus:

• 60\% for training
• 20\% for testing.
• 20\% for validation.

4.3. Training Scenarios Overview

Our study utilized the TabNetClassifier in two principal
scenarios to assess its effectiveness in detecting malware
across different class distributions. The key differentiator
between these scenarios was the class balance, which was
adjusted using the SMOTE.

Scenario 1: Imbalanced Dataset

Initially, the model underwent training using the original
dataset, notably imbalanced with a predominance of
malicious software instances. This setup was designed to
evaluate the model’s inherent capacity to manage class
imbalances.
Scenario 2: Balanced Dataset via SMOTE

Subsequently, SMOTE was applied to create a balanced
dataset, ensuring equal representation of malware and benign
instances. This adjustment tested the hypothesis that a
balanced class distribution would enhance detection
sensitivity.

Common Model Configuration
For both scenarios:

• Epochs: Training was limited to 100 epochs, with
early stopping based on validation performance.

• Batch Sizes: A batch size of 1024 and a virtual batch
size of 128 were used.

• Optimizer: The Adam optimizer with a learning rate
of 0.02 was employed.

• Activation Functions: Sparsemax was utilized for
the attention mechanism, and ReLU for feature
transformation, maintaining the model's
interpretability and efficiency.

The complete design of the proposed methods is outlined in
Tab. 3.

<Tab. 3> Comparison of Training Scenarios Before and After Applying
SMOTE

Feature
TabNetClassifier

Before SMOTE After SMOTE

Class Distribution Imbalanced Balanced
Sampling Technique None SMOTE
Max Epochs 100 100
Batch Size 1024 1024

ASK 2024 학술발표대회 논문집 (31권 1호)

- 296 -

Virtual Batch Size 128 128
Optimizer Adam Adam
Learning Rate 0.02 0.02
Attention Activation Func. Sparsemax
Feature Transf. Activation Func. ReLU

4.4. Evaluation Criteria

We use an extensive collection of evaluation criteria, each
providing distinct insights into different facets of the
behavior of our model, to gauge its performance:

• Accuracy is defined as the number of correct
predictions made by the model, in contrast to all
predictions ever made.

• Precision measures the proportion of correctly
predicted positive values.

• Recall measures the percentage of actual positive
values correctly predicted by the algorithm.

• F1-Score is the harmonic mean of precision and
recall.

Each of these metrics contributes to a holistic understanding
of the model's effectiveness, facilitating informed
adjustments and improvements.

5. RESULTS AND DISCUSSION

The evaluation of the TabNetClassifier's efficacy in
malware detection showed significant improvements
following the application of SMOTE. Initially, the model
achieved a high accuracy of 99.03%, despite being tested on
an imbalanced dataset. The use of SMOTE to balance the
dataset led to a marginal increase in accuracy to 99.10%.
More notably, both precision and recall were enhanced, with
precision reaching 99.03% and recall improving to 99.19%,
reflecting a heightened sensitivity in detecting malware
instances. These improvements collectively highlight the
beneficial impact of SMOTE on the model's performance,
particularly in effectively identifying the minority class.
Comparison results are detailed in Tab. 4.

<Tab. 3> Model Performance

 Accuracy Precision Recall F1-Score
Pre-SMOTE 99.03% 98.24% 98.49% 98.37%
Post-SMOTE 99.10% 99.03% 99.19% 99.11\%

6. RESULTS AND DISCUSSION

The findings of this study underscore the effectiveness of
the TabNetClassifier in malware detection, particularly
highlighting its interpretability and performance. Notably, the
application of SMOTE has demonstrated a significant
enhancement in precision, recall, and F1-score metrics,
emphasizing the importance of balanced datasets in
improving model training outcomes. Looking ahead, future
research endeavors will explore alternative data balancing
techniques and investigate the integration of TabNet with
other models to further enhance cybersecurity defenses.

ACKNOWLEDGEMENT

This work was supported by the National Research
Foundation of Korea(NRF) grant funded by the Korea
government(MSIT) (No. NRF-2022R1A4A1032361).

REFERENCES
[1] Raghuraman, Chandni, et al. "Static and dynamic malware analysis using

machine learning." First International Conference on Sustainable
Technologies for Computational Intelligence: Proceedings of ICTSCI
2019. Springer Singapore, 2020.

[2] Aslan, Ömer, and Abdullah Asim Yilmaz. "A new malware classification
framework based on deep learning algorithms." Ieee Access 9 (2021):
87936-87951.

[3] Olowoyo, Olufikayo, and Pius Owolawi. "Malware classification using
deep learning technique." 2020 2nd International Multidisciplinary
Information Technology and Engineering Conference (IMITEC). IEEE,
2020.

[4] Li, Chen, and Junjun Zheng. "API call-based malware classification
using recurrent neural networks." Journal of Cyber Security and
Mobility 10.3 (2021): 617-640.

[5] Rathore, Hemant, et al. "Malware detection using machine learning and
deep learning." Big Data Analytics: 6th International Conference, BDA
2018, Warangal, India, December 18–21, 2018, Proceedings 6. Springer
International Publishing, 2018.

[6] Catak, Ferhat Ozgur, et al. "Deep learning based Sequential model for
malware analysis using Windows exe API Calls." PeerJ Computer
Science 6 (2020): e285.

[7] Arik, Sercan O., and Tomas Pfister. "Tabnet: Attentive interpretable
tabular learning. arXiv 2019." arXiv preprint arXiv:1908.07442 (1908).

[8] Soltanzadeh, Paria, and Mahdi Hashemzadeh. "RCSMOTE: Range-
Controlled synthetic minority over-sampling technique for handling the
class imbalance problem." Information Sciences 542 (2021): 92-111.

[9] https://github.com/PacktPublishing/Mastering-Machine-Learning-for-
Penetration-Testing/tree/master/Chapter03.

ASK 2024 학술발표대회 논문집 (31권 1호)

- 297 -

