• Title/Summary/Keyword: Containment phenomena

Search Result 46, Processing Time 0.018 seconds

A Study on Effect of Capture Volume in a Cavity on Direct Containment Heating Phenomena

  • Chung, C.Y.;Kim, M.H.;Lee, H.Y.;Kim, P.S.
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.290-298
    • /
    • 1996
  • Direct Containment Heating, DCH, is supposed to occur during a core melt-down accident if the primary system pressure is still high at the time of vessel breach in a Nuclear Power Plant (NPP). In this case, DCH is considered to be one of very important severe phenomena during postulated severe accident scenario because of the fast heat transfer rate to atmosphere and the sharp pressure increase in a containment. To reduce the effect of this DCH phenomena, the capture volume wes designed at Ulchin NPP units 3 and 4. But, the effect of this has not been studied extensively. This work consists of experimental and numerical analyses of the effects of capture volume in the cavity on DCH phenomena. The experimental model is a 1/30 scaled-down model of Ulchin NPP units 3 and 4. We used three types of capture volumes to investigate the effect of size. Numerical analysis using CONTAIN 1.2 is performed with the correlation for the dispersed fraction of molten corium from the cavity into the containment derived from the experimental data to examine the effect of capture volume on DCH phenomena in full scale of Ulchin NPP units 3 and 4.

  • PDF

Optimal design of passive containment cooling system for innovative PWR

  • Ha, Huiun;Lee, Sangwon;Kim, Hangon
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.941-952
    • /
    • 2017
  • Using the Generation of Thermal-Hydraulic Information for Containments (GOTHIC) code, thermal-hydraulic phenomena that occur inside the containment have been investigated, along with the preliminary design of the passive containment cooling system (PCCS) of an innovative pressurized water reactor (PWR). A GOTHIC containment model was constructed with reference to the design data of the Advanced Power Reactor 1400, and report related PCCS. The effects of the design parameters were evaluated for passive containment cooling tank (PCCT) geometry, PCCS heat exchanger (PCCX) location, and surface area. The analyzed results, obtained using the single PCCT, showed that repressurization and reheating phenomena had occurred. To resolve these problems, a coupled PCCT concept was suggested and was found to continually decrease the containment pressure and temperature without repressurization and reheating. If the installation level of the PCCX is higher than that of the PCCT, it may affect the PCCS performance. Additionally, it was confirmed that various means of increasing the external surface area of the PCCX, such as fins, could help improve the energy removal performance of the PCCS. To improve the PCCS design and investigate its performance, further studies are needed.

COMBINED ANALYTICAL AND EXPERIMENTAL INVESTIGATIONS FOR LWR CONTAINMENT PHENOMENA

  • Allelein, Hans-Josef;Reinecke, Ernst-Arndt;Belt, Alexander;Broxtermann, Philipp;Kelm, Stephan
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.249-260
    • /
    • 2012
  • Main focus of the combined nuclear research activities at Aachen University (RWTH) and the Research Center J$\ddot{u}$lich (J$\ddot{U}$LICH) is the experimental and analytical investigation of containment phenomena and processes. We are deeply convinced that reliable simulations for operation, design basis and beyond-design basis accidents of nuclear power plants need the application of so-called lumped-parameter (LP) based codes as well as computational fluid dynamics (CFD) codes in an indispensable manner. The LP code being used at our institutions is the GRS code COCOSYS and the CFD tool is ANSYS CFX mostly used in German nuclear research. Both codes are applied for safety analyses especially of beyond design accidents. Focal point of the work is containment thermal-hydraulics, but source term relevant investigations for aerosol and iodine behavior are performed as well. To increase the capability of COCOSYS and CFX detailed models for specific features, e.g. recombiner behavior including chimney effect, building condenser, and wall condensation are developed and validated against facilities at different scales. The close connection between analytical and experimental activities is notable and identifying feature of the RWTH/J$\ddot{U}$LICH activities.

Scaling analysis of the pressure suppression containment test facility for the small pressurized water reactor

  • Liu, Xinxing;Qi, Xiangjie;Zhang, Nan;Meng, Zhaoming;Sun, Zhongning
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.793-803
    • /
    • 2021
  • The small PWR has been paid more and more attention due to its diversity of application and flexibility in the site selection. However, the large core power density, the small containment space and the rapid accident progress characteristics make it difficult to control the containment pressure like the traditional PWR during the LOCA. The pressure suppression system has been used by the BWR since the early design, which is a suitable technique that can be applied to the small PWR. Since the configuration and operating conditions are different from the BWR, the pressure suppression system should be redesigned for the small PWR. Conducting the experiments on the scale down test facility is a good choice to reproduce the prototypical phenomena in the test facility, which is both economical and reasonable. A systematic scaling method referring to the H2TS method was proposed to determine the geometrical and thermohydraulic parameters of the pressure suppression containment response test facility for the small PWR conceptual design. The containment and the pressure suppression system related thermohydraulic phenomena were analyzed with top-down and bottom-up scaling methods. A set of the scaling criteria were obtained, through which the main parameters of the test facility can be determined.

Analyses of International Standard Problem ISP-47 TOSQAN experiment with containmentFOAM

  • Myeong-Seon Chae;Stephan Kelm;Domenico Paladino
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.611-623
    • /
    • 2024
  • The ISP-47 TOSQAN experiment was analyzed with containmentFOAM which is an open-source CFD code based on OpenFOAM. The containment phenomena taking place during the experiment are gas mixing, stratification and wall condensation in a mixture composed of steam and non-condensable gas. The k-ω SST turbulence model was adopted with buoyancy turbulence models. The wall condensation model used is based on the diffusion layer approach. We have simulated the full TOSQAN experiment which had a duration 20000 s. Sensitivity studies were conducted for the buoyancy turbulence models with SGDH and GGDH and there were not significant differences. All the main features of the experiments namely pressure history, temperature, velocity and gas species evolution were well predicted by containemntFOAM. The simulation results confirmed the formation of two large flow stream circulations and a mixing zone resulting by the combined effects of the condensation flow and natural convection flow. It was found that the natural convection in lower region of the vessel devotes to maintain two large circulations and to be varied the height of the mixing zone as result of sensitivity analysis of non-condensing wall temperature. The computational results obtained with the 2D mesh grid approach were comparable to the experimental results.

An Assessment on the Containment Integrity of Korean Standard Nuclear Power Plants Against Direct Containment Heating Loads

  • Seo, Kyung-Woo;Kim, Moo-Hwan;Lee, Byung-Chul;Jeun, Gyoo-Dong
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.468-482
    • /
    • 2001
  • As a process of Direct Containment Heating (DCH) issue resolution for Korean Standard Nuclear Power Plants (KSNPs), a containment load/strength assessment with two different approaches, the probabilistic and the deterministic, was performed with all plant-specific and phenomena-specific data. In case of the probabilistic approach, the framework developed to support the Zion DCH study, Two-Cell Equilibrium (TCE) coupled with Latin Hypercubic Sampling (LHS), provided a very efficient tool to resolve DCH issue. In case of the deterministic approach, the evaluation methodology using the sophisticated mechanistic computer code, CONTAIN 2.0 was developed, based on findings from DCH-related experiments or analyses. For three bounding scenarios designated as Scenarios V, Va, and VI, the calculation results of TCE/LHS and CONTAIN 2.0 with the conservatism or typical estimation for uncertain parameters, showed that the containment failure resulted from DCH loads was not likely to occur. To verify that these two approaches might be conservative , the containment loads resulting from typical high-pressure accident scenarios (SBO and SBLOCA) for KSNPs were also predicted. The CONTAIN 2.0 calculations with boundary and initial conditions from the MAAP4 predictions, including the sensitivity calculations for DCH phenomenological parameters, have confirmed that the predicted containment pressure and temperature were much below those from these two approaches, and, therefore, DCH issue for KSNPS might be not a problem.

  • PDF

Numerical analysis on in-core ignition and subsequent flame propagation to containment in OPR1000 under loss of coolant accident

  • Song, Chang Hyun;Bae, Joon Young;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2960-2973
    • /
    • 2022
  • Since Fukushima nuclear power plant (NPP) accident in 2011, the importance of research on various severe accident phenomena has been emphasized. Particularly, detailed analysis of combustion risk is necessary following the containment damage caused by combustion in the Fukushima accident. Many studies have been conducted to evaluate the risk of local hydrogen concentration increases and flame propagation using computational code. In particular, the potential for combustion by local hydrogen concentration in specific areas within the containment has been emphasized. In this study, the process of flame propagation generated inside a reactor core to containment during a loss of coolant accident (LOCA) was analyzed using MELCOR 2.1 code. Later in the LOCA scenario, it was expected that hydrogen combustion occurred inside the reactor core owing to oxygen inflow through the cold leg break area. The main driving force of the oxygen intrusion is the elevated containment pressure due to the molten corium-concrete interaction. The thermal and mechanical loads caused by the flame threaten the integrity of the containment. Additionally, the containment spray system effectiveness in this situation was evaluated because changes in pressure gradient and concentrations of flammable gases greatly affect the overall behavior of ignition and subsequent containment integrity.

Development of Two-Dimensional Hydrogen Mixing Model in Containment Subcompartment Under the Severe Accident Conditions

  • Lee, Byung-Chul;Cho, Jae-Seon;Park, Goon-Cherl;Chung, Chang-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.663-668
    • /
    • 1996
  • A two-dimensional continuum model for the prediction of the hydrogen mixing phenomena in the containment compartment under the severe accident conditions is developed. The model could predict well the distribution of time-dependent hydrogen concentration for selected HEDL Experiment. For a simulation of these experiments, the hydrogen is mixed uniform over the test compartment. To predict the extent of non-uniform distribution, the dominant factors such as the geometrical shape of obstacle and velocity of source injection in mixing phenomena are investigated. If the obstacle disturbing the flow of gas mixture exists in the compartment, the uniform distribution of hydrogen may be not guaranteed. The convective circulation of gas flow is separately formed up and down of the obstacle position, which makes a difference of hydrogen concentration between the upper and lower region of the compartment. The recirculation flow must have a considerable mass flow rate relative to velocity of the source injection to sustain the well-mixed conditions of hydrogen.

  • PDF

Effects of Condensation Heat Transfer Model in Calculation for KNGR Containment Pressure and Temperature Response

  • Eoh, Jae-Hyuk;Park, Shane;Jeun, Gyoo-Dong;Kim, Moo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.241-253
    • /
    • 2001
  • Under severe accidents, the pressure and temperature response has an important role for the integrity of a nuclear power plant containment. The history of the pressure and temperature is characterized by the amount and state of steam/air mixture in a containment. Recently, the heat transfer rate to the structure surface is supposed to be increased by the wavy interface formed on condensate film. However, in the calculation by using CONTAIN code, the condensation heat transfer on a containment wall is calculated by assuming the smooth interface and has a tendency to be underestimated for safety. In order to obtain the best- estimate heat transfer calculation, we investigated the condensation heat transfer model in CONTAIN 1.2 code and adopted the new forced convection correlation which is considering wavy interface. By using the film tracking model in CONTAIN 1.2 code, the condensate film is treated to consider the effect of wavy interface. And also, it was carried out to investigate the effect of the different cell modelings - 5-cell and 10-cell modeling - for KNGR(Korean Next Generation Reactor) containment phenomena during a severe accident. The effect of wavy interface on condensate film appears to cause the decrease of peak temperature and pressure response . In order to obtain more adequate results, the proper cell modeling was required to consider the proper flow of steam/air mixture.

  • PDF