Browse > Article
http://dx.doi.org/10.1016/j.net.2022.03.023

Numerical analysis on in-core ignition and subsequent flame propagation to containment in OPR1000 under loss of coolant accident  

Song, Chang Hyun (Department of Nuclear Engineering, Hanyang University)
Bae, Joon Young (Department of Nuclear Engineering, Hanyang University)
Kim, Sung Joong (Department of Nuclear Engineering, Hanyang University)
Publication Information
Nuclear Engineering and Technology / v.54, no.8, 2022 , pp. 2960-2973 More about this Journal
Abstract
Since Fukushima nuclear power plant (NPP) accident in 2011, the importance of research on various severe accident phenomena has been emphasized. Particularly, detailed analysis of combustion risk is necessary following the containment damage caused by combustion in the Fukushima accident. Many studies have been conducted to evaluate the risk of local hydrogen concentration increases and flame propagation using computational code. In particular, the potential for combustion by local hydrogen concentration in specific areas within the containment has been emphasized. In this study, the process of flame propagation generated inside a reactor core to containment during a loss of coolant accident (LOCA) was analyzed using MELCOR 2.1 code. Later in the LOCA scenario, it was expected that hydrogen combustion occurred inside the reactor core owing to oxygen inflow through the cold leg break area. The main driving force of the oxygen intrusion is the elevated containment pressure due to the molten corium-concrete interaction. The thermal and mechanical loads caused by the flame threaten the integrity of the containment. Additionally, the containment spray system effectiveness in this situation was evaluated because changes in pressure gradient and concentrations of flammable gases greatly affect the overall behavior of ignition and subsequent containment integrity.
Keywords
Severe accident; Hydrogen; Combustion; Flame propagation; MELCOR; SAMG;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. Vidal, W. Wong, W.J. Rogers, M.S. Mannan, Evaluation of lower flammability limits of fuel-air-diluent mixtures using calculated adiabatic flame temperatures, J. Hazard Mater. 130 (1-2 SPEC. ISS.) (2006) 21-27, https://doi.org/10.1016/j.jhazmat.2005.07.080.   DOI
2 F. Van den Schoor, F. Verplaetsen, The upper flammability limit of methane/ hydrogen/air mixtures at elevated pressures and temperatures, Int. J. Hydrogen Energy 32 (13) (2007) 2548-2552, https://doi.org/10.1016/j.ijhydene.2006.10.053.   DOI
3 L.L. Humphries, R.K. Cole, D.L. Louie, V.G. Figueroa, M.F. Y, MELCOR Users Guide, 2015.
4 J.E. Hustad, O.K. Sonju, Experimental studies of lower flammability limits of gases and mixtures of gases at elevated temperatures, Combust. Flame 71 (3) (1988) 283-294, https://doi.org/10.1016/0010-2180(88)90064-8.   DOI
5 B.R. Sehgal, Nuclear safety in light water reactors: severe accident phenomenology, Ch. 3 Early Containment (2012).
6 K. Il Ahn, S.Y. Park, W. Choi, S.J. Kim, Best-practice severe accident analysis for the OPR1000 short-term SBO sequence using MELCOR2.2 and MAAP5, Ann. Nucl. Energy 160 (2021), https://doi.org/10.1016/j.anucene.2021.108350.   DOI
7 Z.M. Shapiro, T.R. Moffette, Hydrogen Flammability Data and Application to PWR Loss-Of-Coolant Accident, 1957. Wapd-Sc-545.
8 C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, B. Kaeppeli, A. Inauen, An experimental and numerical investigation of turbulent catalytically stabilized channel flow combustion of hydrogen/air mixtures over platinum, Proc. Combust. Inst. 29 (1) (2002) 1031-1038, https://doi.org/10.1016/S1540-7489(02)80130-4.   DOI
9 ANS (American Nuclear Society), Time Response Design Criteria for Safetyrelated Operator Actions, ANSI/ANS-58.8-1994, 1994. La Grange Park, Illinois.
10 M.T. Farmer, S. Lomperski, D.J. Kilsdonk, R.W. Aeschlimann, N.E. Division, OECD/MCCI-2010-TR07 OECD MCCI-2 Project Final Report, 2010.
11 W. Jung, J. Park, J. Kim, J. Ha, Analysis of an operators' performance time and its application to a human reliability analysis in nuclear power plants, IEEE Trans. Nucl. Sci. 54 (5) (2007) 1801-1811, https://doi.org/10.1109/TNS.2007.905163.   DOI
12 M. Hertzberg, Flammability limits and pressure development, in: M. Berman (Ed.), H2-air Mixtures (NUREG/CR-2017-Vol3), 1981. United States.
13 N.K. Kim, J. Jeon, W. Choi, S.J. Kim, Systematic hydrogen risk analysis of OPR1000 containment before RPV failure under station blackout scenario, Ann. Nucl. Energy 116 (2018) 429-438, https://doi.org/10.1016/j.anucene.2018.02.050.   DOI
14 B.C. Lee, et al., An optimal hydrogen control analysis for the in-containment refueling storage tank (IRWST) of the Korean next generation reactor (KNGR) containment under severe accidents, Int. Conf. Nuclear Eng. Nice France (2001).
15 OECD/NEA, Flame Acceleration and Deflagration-To-Detonation Transition in Nuclear Safety, 2000. NEA/CSNI/R(2000)7.
16 OECD/NEA, Status Report on Hydrogen Management and Related Computer Codes, 2014. NEA/CSNI/R(2014)8.
17 G. Huang, L. Fang, Analysis of hydrogen control in severe accidents of CANDU6, Ann. Nucl. Energy 60 (2013) 301-307, https://doi.org/10.1016/j.anucene.2013.04.019.   DOI
18 S. S, ahin, M.S. Sarwar, Hydrogen hazard and mitigation analysis in PWR containment, Ann. Nucl. Energy 58 (2013) 132-140, https://doi.org/10.1016/j.anucene.2013.03.001.   DOI
19 E. Lopez-Alonso, D. Papini, G. Jimenez, Hydrogen distribution and Passive Autocatalytic Recombiner (PAR) mitigation in a PWR-KWU containment type, Ann. Nucl. Energy 109 (2017) 600-611, https://doi.org/10.1016/j.anucene.2017.05.064.   DOI
20 KHNP (Korea Hydro & Nuclear Power Co.), Shin Kori 1&2 Final Safety Analysis Report, 2008.
21 OECD/NEA, ISP-49 on Hydrogen Combustion, 2011. NEA/CSNI/R(2011)9.
22 S. Gupta, E. Schmidt, B. Von Laufenberg, M. Freitag, G. Poss, F. Funke, G. Weber, Thai test facility for experimental research on hydrogen and fission product behaviour in light water reactor containments, Nucl. Eng. Des. 294 (October) (2015) 183-201, https://doi.org/10.1016/j.nucengdes.2015.09.013.   DOI
23 M. Vidal, W. Wong, W.J. Rogers, M.S. Mannan, Evaluation of lower flammability limits of fuel-air-diluent mixtures using calculated adiabatic flame temperatures, J. Hazard Mater. 130 (1-2 SPEC. ISS.) (2006) 21-27, https://doi.org/10.1016/j.jhazmat.2005.07.080.   DOI
24 H.F. Coward, G.W. Jones, Limits of Flammability of Gases and Vapors, 1952.
25 J. Wang, Y. Zhang, K. Mao, Y. Huang, W. Tian, G. Su, S. Qiu, MELCOR simulation of core thermal response during a station blackout initiated severe accident in China pressurized reactor (CPR1000), Prog. Nucl. Energy 81 (2015) 6-15, https://doi.org/10.1016/j.pnucene.2014.12.008.   DOI
26 J. Deng, X.W. Cao, A study on evaluating a passive autocatalytic recombiner PAR-system in the PWR large-dry containment, Nucl. Eng. Des. 238 (10) (2008) 2554-2560, https://doi.org/10.1016/j.nucengdes.2008.04.011.   DOI
27 J. Park, Y. Kim, J.H. Kim, W. Jung, S.C. Jang, Estimating the response times of human operators working in the main control room of nuclear power plants based on the context of a seismic event - a case study, Ann. Nucl. Energy 85 (2015) 36-46, https://doi.org/10.1016/j.anucene.2015.03.053.   DOI
28 A. Kecebas, , M. Kayfeci, Hydrogen properties, Solar Hydrogen Prod.: Process. Syst. Technol. (2019) 3-29, https://doi.org/10.1016/B978-0-12-814853-2.00001-1.   DOI
29 M. Ilbas, A.P. Crayford, I. Yilmaz, P.J. Bowen, N. Syred, Laminar-burning velocities of hydrogen-air and hydrogen-methane-air mixtures: an experimental study, Int. J. Hydrogen Energy 31 (12) (2006) 1768-1779, https://doi.org/10.1016/j.ijhydene.2005.12.007.   DOI
30 M.T. Farmer, S. Lomperski, R.W. Aeschlimann, D.J. Kilsdonk, N.E. Division, OECD/MCCI-2010-TR02 OECD MCCI Project Category 2 Coolability Engineering Enhancement Tests: Final Report, 2010.
31 L.L. Humphries, R.K. Cole, D.L. Louie, V.G. Figueroa, M.F. Y, MELCOR Reference Manual, 2015.
32 Y.G. No, C. Lee, S. Hur, P.H. Seong, Development of a method for identifying severe status requiring early entrance of SAMG considering human action time, Ann. Nucl. Energy 122 (2018) 317-327, https://doi.org/10.1016/j.anucene.2018.09.006.   DOI
33 P. Wang, Y. Zhao, Y. Chen, L. Bao, S. Meng, S. Sun, Study on the lower flammability limit of H2/CO in O2/H2O environment, Int. J. Hydrogen Energy 42 (16) (2017) 11926-11936, https://doi.org/10.1016/j.ijhydene.2017.02.143.   DOI
34 H. Le Chatelier, Estimation of firedamp by flammability limits, Ann. Mines 19 (1891) 388-395.
35 J. Jeon, W. Choi, S.J. Kim, A flammability limit model for hydrogen-air-diluent mixtures based on heat transfer characteristics in flame propagation, Nucl. Eng. Technol. 51 (7) (2019) 1749-1757, https://doi.org/10.1016/j.net.2019.05.005.   DOI
36 Y.S. Kim, J. Jeon, C.H. Song, S.J. Kim, Improved prediction model for H2/CO combustion risk using a calculated non-adiabatic flame temperature model, Nucl. Eng. Technol. 52 (12) (2020) 2836-2846, https://doi.org/10.1016/j.net.2020.07.040.   DOI
37 S. Kondo, K. Takizawa, A. Takahashi, K. Tokuhashi, A. Sekiya, A study on flammability limits of fuel mixtures, J. Hazard Mater. 155 (3) (2008) 440-448, https://doi.org/10.1016/j.jhazmat.2007.11.085.   DOI
38 M. Saghafi, F. Yousefpour, K. Karimi, S.M. Hoseyni, Determination of PAR configuration for PWR containment design: a hydrogen mitigation strategy, Int. J. Hydrogen Energy 42 (10) (2017) 7104-7119, https://doi.org/10.1016/j.ijhydene.2017.01.110.   DOI
39 C. Kim, H. Kim, I. Ryu, Y. Moon, Comparison MAAP5.03 with MAAP5.04 from Recombination of CO point of view, in: Transactions of the Korean Nuclear Society Autumn Meeting, 2016.