• Title/Summary/Keyword: Container cranes

Search Result 175, Processing Time 0.022 seconds

Decision Support System for Efficient Ship Planning of Container Terminals (효율적인 컨테이너 터미널 선적 계획을 위한 의사결정지원시스템)

  • 신재영;곽규석;남기찬
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.255-266
    • /
    • 1999
  • The purpose of this paper is to describe the design of the decision support system for container terminal ship planning and to introduce the implemented system. The ship planning in container terminals consists of three major decision processes -the working schedule of gantry cranes the discharging sequence of inbound containers the loading position and sequence of outbound containers. For making these decision the proposed system can provide two ship planning modes the interactive planning mode with user-friendly GUI and the automated planning made. To implement the automated planning routine we acquired the planning rules from the expert planner in container terminals and developed an expert system based on the rules. Finally we evaluated the system developed and the potential for commercialization by using container terminal data.

  • PDF

Design of a Model-Based Fuzzy Controller for Container Cranes (컨테이너 크레인을 위한 모델기반 퍼지제어기 설계)

  • Lee, Soo-Lyong;Lee, Yun-Hyung;Ahn, Jong-Kap;Son, Jeong-Ki;Choi, Jae-Jun;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.459-464
    • /
    • 2008
  • In this paper, we present the model-based fuzzy controller for container cranes which effectively performs set-point tracking control of trolley and anti-swaying control under system parameter and disturbance changes. The first part of this paper focuses on the development of Takagi-Sugeno (T-S) fuzzy modeling in a nonlinear container crane system. Parameters of the membership functions are adjusted by a RCGA to have same dynamic characteristics with nonlinear model of a container crane. In the second part, we present a design methodology of the model-based fuzzy controller. Sub-controllers are designed using LQ control theory for each subsystem in fuzzy model and then the proposed controller is performed with the combination of these sub-controllers by fuzzy IF-THEN rules. In the results of simulation, the fuzzy model showed almost similar dynamic characteristics compared to the outputs of the nonlinear container crane model. Also, the model-based fuzzy controller showed not only the fast settling time for the change in parameter and disturbance, but also stable and robust control performances without any steady-state error.

Anti-Sway System for Automated Crane (자동화 크레인을 위한 흔들림 방지 시스템)

  • 박찬훈;김두형;박경택
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.446-449
    • /
    • 1997
  • Yard cranes are very useful equipments for handling of heavy containers. But rope-driven yard cranes must have a little of sway and skew motion because ropes arc passive mechanical device. So many researches have been concentrated on anti-sway algorithm controlling trolley speed. But control algorithm of trolley speed is not practical in windy weather. In this paper, we are going to propose a new structure for anti-sway. This structure uses aux. :opes. The control strategy with auxiliary rope is very useful to sway control of yard crane because rope length is shorter than quay-sidc container cranes. In this paper, we derive cquatlons of motion of trolley system which have anti-sway controller to use auxiliary rope. And we propose the control strategy and analyse the behavior of the proposed system.

  • PDF

Models for Determining the Size of Import Container Block in Automated Container Terminals (자동화 컨테이너 터미널에서 수입 컨테이너 장치 블록 크기 결정을 위한 모형)

  • Kim, Ki-Young
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.705-710
    • /
    • 2007
  • The productivity of automated container terminals is significantly affected by not only the speed related performances of automated transfer cranes(ATCs) but also the sizes of container blocks. In this paper, it is discussed how to determine the size of import container blocks considering both the container handling times of an ATC and their storage space. Firstly, evaluation models are suggested for the container handling times of an ATC in a typical import container blocks. Secondly, three mathematical formulations are suggested to determine the size of import container blocks. Numerical experiments for the suggested models to determine the size of import container block are provided.

On the Study of the Production Improvement of Container Cranes (컨테이너 크레인의 생산성 향상에 관한 연구)

  • Son, J.G.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.113-118
    • /
    • 1998
  • The Container crane is mainly used in the harbor. But in spite of this wide use, it is a fact that there are still areas for automation, concerning the operator and the control system. If the encoding function is enhanced, then control effect can be increased to some extent. Since the distance from the hoist to the trolley cam be measured, the moving distance from the loading and unloading can be minimized. If this is applied to the real system, hazard elements can be eliminated and in given time since more unloading can be done, congestion can be reduced.

  • PDF

Study on Simulation for Buffer Space Analysis of Container Crane with Dual Trolley (듀얼 트롤리형 컨테이너 크레인 버퍼공간 분석을 위한 시뮬레이션 연구)

  • Choi, Yong-Seok;Won, Seung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.33 no.5
    • /
    • pp.331-337
    • /
    • 2009
  • Container crane is main equipment in container terminals and it determines the productivity and the efficiency of container terminals. The typical type of container cranes has the single trolley and one among advanced types of them has the dual trolley. The objective of this paper is to analyze the buffer size of a container crane with the dual trolley in container terminals. We present a simulation model for analysing the buffer space of a container crane with the dual trolley. The buffer space is located between main trolley in sea-side and second trolley in yard-side. We performs various simulation experiments and analyze the buffer size to estimate the required productivity.

Optimization of Dispatching Strategies for Stacking Cranes Including Remarshaling Jobs (재정돈을 포함한 장치장 크레인의 작업 할당 전략 최적화)

  • Kim, Taekwang;Yang, Youngjee;Bae, Aekyoung;Ryu, Kwang Ryul
    • Journal of Navigation and Port Research
    • /
    • v.38 no.2
    • /
    • pp.155-162
    • /
    • 2014
  • In container terminals, stacking yard is the place where import and export containers are temporarily stored before being loaded onto or after being discharged from a ship. Since all the containers go through the stacking yard in their logistic flow, the productivity of the terminal critically depends on efficient operation of stacking yard, which again depends on how well the stacking locations of the incoming containers are determined. However, a good location for stacking an incoming container later can turn out to be a bad one when that container is to be fetched out of the stacking yard, especially if some rehandling is required. This means that good locations for the containers are changing over time. Therefore, in most container terminals, the so-called remarshaling is done to move the containers from bad location to good locations. Although there are many previous works on remarshaling, they all assume that the remarshaling can be done separately from the main jobs when the cranes are idle for rather a long period of time. However, in reality, cranes are hardly available for a period long enough for remarshaling. This paper proposes a crane dispatching strategy that allows remarshaling jobs to be mixed together with the main jobs whenever an opportunity is detected. Experimental results by simulation reveals that the proposed method effectively contributes to the improvement of terminal productivity.

A Simulation Study on the Deadlock of a Rail-Based Container Transport System (레일기반 컨테이너 이송 시스템의 교착에 관한 시뮬레이션 연구)

  • Seo, Jeong-Hoon;Yi, Sang-Hyuk;Kim, Kap-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.47-56
    • /
    • 2018
  • In this study, the focus is on the issue of whether a container terminal is facing the limitation of its productivity for serving mega-vessels with numerous containers. In order to enhance the terminal operations, a new conceptual design of the container handling system have been proposed. This research focuses on the rail-based container transport system and its operations. This system consists of rail-based shuttle cranes and rail-based transporters called flatcars. The deadlock problem for managing automated transporters in container terminals has been an important issue for a long measurement of time. Therefore, this study defines the deadlock situation and proposes its avoidance rules at the rail-based container transport system, which is required to handle numerous container throughput operations. The deadlock in the rail-based container transport system is classified into two parts: deadlock between cranes and flatcars; deadlock between flatcars. We developed the simulation model for use with characterizing and analyzing the rail-based container transport system. By running the simulation, we derived possible deadlock situations, and propose the several deadlock avoidance algorithms to provide results for these identified situations. In the simulation experiments, the performances of the deadlock avoidance algorithms are compared according to the frequency of deadlocks as noted in the simulations.

Ship Loading Plan for Tandem Crane in Container Terminals (탠덤 크레인을 고려한 컨테이너터미널 선적 계획)

  • Kwon, Sun-Cheol;Shin, Jae-Young;Kim, Sang-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.167-168
    • /
    • 2009
  • As the rapid increase of the container trade, most of the container terminals strive to improve the container handling productivity. Therefore, they consider to find efficient operating strategies and to introduce new container handling facilities. In terms of equipment, there are a variety of types of quay cranes. Single-lift crane operates only one container regardless of size and twin-lift crane operates two 20' containers or one 40' container simultaneously. Tandem crane, recently introduced, can operate four 20' containers or two 40' containers simultaneously. In this paper, we propose the mathematical model and the solution procedure of the ship loading scheduling problem for the tandem crane.

  • PDF

Sliding-Mode Control of Container Cranes (컨테이너크레인 시스템의 슬라이딩모드제어)

  • Lee Suk-Jae;Park Hahn;Hong Keum-Shik
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.747-753
    • /
    • 2005
  • In this paper, as an anti-sway control strategy of container cranes, we investigate a variable structure control in which the moving load follows a given trajectory, whereas both the trolley and hoist controllers achieve their positioning problems. It is crucial, in an automated container terminal, that collisions should be avoided during the transference of containers from one place to another. It is also necessary, in the case of a quay crane, to select suitable loading and unloading trajectories of containers, so that possible collisions with surrounding obstacles are avoided. After a brief introduction of the mathematical model, a robust control scheme (i.e., a second-order sliding mode control that guarantees a fast and precise transference and a suppression of the resulted swing) is presented. Despite model uncertainties and unmodeled actuators dynamics, the swing suppression from the given trajectory is obtained by constraining the system motion on suitable sliding surfaces, which include both the desired path and the swing angle. The proposed controller has been tested with a laboratory-size pilot crane. Experimental results are provided.