DOI QR코드

DOI QR Code

레일기반 컨테이너 이송 시스템의 교착에 관한 시뮬레이션 연구

A Simulation Study on the Deadlock of a Rail-Based Container Transport System

  • Seo, Jeong-Hoon (Department of Industrial Engineering, Pusan National University) ;
  • Yi, Sang-Hyuk (Department of Industrial Engineering, Pusan National University) ;
  • Kim, Kap-Hwan (Department of Industrial Engineering, Pusan National University)
  • 투고 : 2017.12.08
  • 심사 : 2018.01.30
  • 발행 : 2018.02.28

초록

초대형선박의 등장으로 컨테이너 터미널 생산성의 한계에 직면하고 있으며 이를 해결하기 위한 새로운 개념의 터미널시스템들이 제안되고 있다. 본 논문에서는 개념설계 중인 레일기반 컨테이너 이송시스템을 대상으로 연구한다. 이는 레일 위를 움직이는 무인반송차인 플랫카와 천장형 레일을 따라 움직이는 셔틀크레인으로 구성된 시스템이다. 자동화된 컨테이너 터미널에서 컨테이너 수송 기능을 담당하는 무인반송차의 운영 시 교착과 같은 병목현상은 오랫동안 중요한 문제로 잘 알려져 있다. 따라서 초대형 선박과 같이 대량의 컨테이너 취급하는 신개념의 레일기반 컨테이너 이송시스템에서 발생 가능한 교착 현상을 정의하고 해결방안에 대해 논한다. 교착 현상은 이종장비 간 교착과 플랫카 간 교착문제로 구분하여 소개한다. 본 연구는 시뮬레이션 접근법을 사용하여 레일기반 컨테이너 시스템 모델을 개발한다. 개발된 시뮬레이션 모델의 실행을 통하여 수송구간에서 발생 가능한 교착 상태를 확인하고 이를 해소하기 위한 교착 회피 규칙을 개발한다. 시뮬레이션 실험을 통하여 교착발생 빈도를 기준으로 교착 회피 규칙들의 성능을 비교한다.

In this study, the focus is on the issue of whether a container terminal is facing the limitation of its productivity for serving mega-vessels with numerous containers. In order to enhance the terminal operations, a new conceptual design of the container handling system have been proposed. This research focuses on the rail-based container transport system and its operations. This system consists of rail-based shuttle cranes and rail-based transporters called flatcars. The deadlock problem for managing automated transporters in container terminals has been an important issue for a long measurement of time. Therefore, this study defines the deadlock situation and proposes its avoidance rules at the rail-based container transport system, which is required to handle numerous container throughput operations. The deadlock in the rail-based container transport system is classified into two parts: deadlock between cranes and flatcars; deadlock between flatcars. We developed the simulation model for use with characterizing and analyzing the rail-based container transport system. By running the simulation, we derived possible deadlock situations, and propose the several deadlock avoidance algorithms to provide results for these identified situations. In the simulation experiments, the performances of the deadlock avoidance algorithms are compared according to the frequency of deadlocks as noted in the simulations.

키워드

참고문헌

  1. Banaszak, Z. A. and Krogh, B. H.(1990), "Deadlock Avoidance in Flexible Manufacturing Systems with Concurrently Competing Process Flows", IEEE Transactions on Robotics and Automation, Vol. 6, No. 6, pp. 724-734. https://doi.org/10.1109/70.63273
  2. Coffman, E. G., Elphick, M. J. and Shoshani, A.(1971), "System deadlocks", ACM Computer Surveys, Vol. 3, No. 2, pp. 67-78. https://doi.org/10.1145/356586.356588
  3. Duinkerken, M. B., Evers, J. M. and Ottjes, J. A.(1999), "TRACES : Traffic Control Engineering System", Proceedings of the 31st Summer Computer Simulation Conference, pp. 461-465.
  4. Evers, J. M. and Koppers, S. A.(1996), "Automated Guided Vehicle Traffic Control at a Container Terminal", Transportation Research Part A, Vol. 30, No. 1, pp. 21-34. https://doi.org/10.1016/0965-8564(95)00011-9
  5. Fanti, M. P.(2002), "Event-based Controller to Avoid Deadlock and Collisions in Zone-control AGVS", International Journal of Production Research, Vol. 40, No. 6, pp. 1453-1478. https://doi.org/10.1080/00207540110118073
  6. Fanti, M. P., Maione, B., Mascolo, S. and Turchiano, B.(1997), "Event-based Feedback Control for Deadlock Avoidance in Flexible Production Systems", IEEE Transactions on Robotics and Automation, Vol. 13, No. 3, pp. 347-363. https://doi.org/10.1109/70.585898
  7. Kim, C. W. and Tanchoco, J. M. A.(1991), "Conflict-free Shortest-time Bi-directional AGV Routing", International Journal of Production Research, Vol. 29, No. 12, pp. 2377-2391. https://doi.org/10.1080/00207549108948090
  8. Kim, C. W. and Tanchoco, J. M. A.(1993), "Operational Control of Bi-directional AGV System", International Journal of Production Research, Vol. 31, No. 9, pp. 2123-2138. https://doi.org/10.1080/00207549308956848
  9. Kim, K. H., Jeon, S. M. and Ryu, K. R.(2006), "Deadlock Prevention for Automated Guided Vehicles in Automated Container Terminals", OR Spectrum, Vol. 28, pp. 659-679. https://doi.org/10.1007/s00291-006-0055-2
  10. Kim, K. H., Phan, M. T. and Woo, Y. J.(2012), "New Conceptual Handling Systems in Container Terminals", Industrial Engineering & Management Systems, Vol. 11, No. 4, pp. 299-309. https://doi.org/10.7232/iems.2012.11.4.299
  11. Lee, C. C. and Lin, J. T.(1995), "Deadlock Prediction and Avoidance Based on Petri Nets for Zone Control Automated Guided Vehicle Systems", International Journal of Production Research, Vol. 33, No. 12, pp. 3239-3265.
  12. Lee, E., Jeong, D. and Choi, S.(2014), "A Study on the New Concept Container Terminal for Processing Containers of Mega Sized Container Ships", The Journal of Shipping and Logistics, Vol. 30, No. 3, pp. 671-696.
  13. Lehmann, M., Grunow, M. and Guenther, H. O.(2006), "Deadlock Handling for Real-time Control of AGVs at Automated Container Terminals", OR Spectrum, Vol. 28, pp. 631-657. https://doi.org/10.1007/s00291-006-0053-4
  14. Meng, Q., Weng, J. and L, S.(2017), "Impact Analysis of Mega Vessels on Container Terminal Operations", Transportation Research Procedia, Vol. 25, pp. 187-204. https://doi.org/10.1016/j.trpro.2017.05.389
  15. Mohring, R. H., Köhler, E., Gawrilow, E. and Stenzel, B.(2004), "Conflict-free Real-time AGV Routing", Operations Research Proceedings(2004), pp. 18-24.
  16. Rajeeva, L. M., Wee, H. G., Ng, W. C., Teo, C. P. and Yang, N. S.(2003), "Cyclic Dead-lock Prediction and Avoidance for Zone-controlled AGV System", International Journal of Production Economics, Vol. 83, No. 3, pp. 309-324. https://doi.org/10.1016/S0925-5273(02)00370-5
  17. Reveliotis, S. A.(2000), "Conflict Resolution in AGV System", IIE Transactions, Vol. 32, No. 7, pp. 647-659. https://doi.org/10.1080/07408170008967423
  18. Singgih, I. K.(2017), "Optimizing Ship Operation in a Rail-based Automated Container Terminal", Pusan National University, Department of Industrial Engineering, PhD Dissertation.
  19. Viswanadham, N., Narahari, Y. and Johnson, T. L.(1990), "Deadlock Prediction and Deadlock Avoidance in Flexible Manufacturing Systems using Petri Net Models", IEEE Transactions on Robotics and Automation, Vol. 6, No. 6, pp. 713-723. https://doi.org/10.1109/70.63257
  20. Wu, N. Q. and Zhou, M. C.(2000), "Resource-oriented Petri Nets for Deadlock Avoidance in Automated Manufacturing", Proceedings of 2000 IEEE International Conference on Robotics and Automation, pp. 3377-3382.
  21. Wu, N. Q.(1999), "Necessary and Sufficient Conditions for Deadlock-free Operation in Flexible Manufacturing Systems using a Colored Petri Net Model", IEEE Transactions on Systems, Man, and Cybernetics Part C, Vol. 29, No. 2, pp. 182-204.
  22. Yeh, M. S. and Yeh, W. C.(1998), "Deadlock Prediction and Avoidance for Zone-control AGVs", International Journal of Production Research, Vol. 36, No. 10, pp. 2879-2889. https://doi.org/10.1080/002075498192526