• Title/Summary/Keyword: Contact-loading

Search Result 523, Processing Time 0.022 seconds

Numerical and experimental study on flexural behavior of reinforced concrete beams: Digital image correlation approach

  • Krishna, B. Murali;Reddy, V. Guru Prathap;Tadepalli, T.;Kumar, P. Rathish;Lahir, Yerra
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.561-570
    • /
    • 2019
  • Understanding the realistic behavior of concrete up to failure under different loading conditions within the framework of damage mechanics and plasticity would lead to an enhanced design of concrete structures. In the present investigation, QR (Quick Response) code based random speckle pattern is used as a non-contact sensor, which is an innovative approach in the field of digital image correlation (DIC). A four-point bending test was performed on RC beams of size 1800 mm × 150 mm × 200 mm. Image processing was done using an open source Ncorr algorithm for the results obtained using random speckle pattern and QR code based random speckle pattern. Load-deflection curves of RC beams were plotted for the results obtained using both contact and non-contact (DIC) sensors, and further, Moment (M)-Curvature (κ) relationship of RC beams was developed. The loading curves obtained were used as input data for material model parameters in finite element analysis. In finite element method (FEM) based software, concrete damage plasticity (CDP) constitutive model is used to predict the realistic nonlinear quasi-static flexural behavior of RC beams for monotonic loading condition. The results obtained using QR code based DIC are observed to be on par with conventional results and FEM results.

A Study of the Influence of Strain Gauge Location and Contact Conditions by Loading Platens on the Mechanical Behavior of Rock Specimens (암석공시체의 역학적 거동 해석에 미치는 변형율게이지 위치 및 단면구속 영향에 대한 연구)

  • 정교철
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.215-224
    • /
    • 1998
  • In this study, total strain was measured by LVDTs and local strains on the surface of specimens were measured by strain gauges. And axi-symmetrically elastoplastic FEM analyses was carried out for cylindrical specimens. Considering the influence of the restraint induced by the loading platen, in the case of H/D=1, the strain distribution on the side of a specimen is obviously affected by the condition of platen contact. Furthermore, it is clear that the larger H/D ratio becomes, the smaller the influence to the strain distribution is. For the smooth contact condition, the strain on the side is not influenced by the stiffness of the specimen, the shape and the scale effect, the strain distribution coincides with the nominal total strain. Whereas, in the case of rough contact condition, the strain distribution is remarkably affected. It is made clear that strain responses of hard rock specimens may more sensitive than these of soft rock specimens as a results of interaction between loading platens and specimen and the uniaxial strength of specimens may strongly depends on this interaction and stress-strain relation is affected by the contact condition.

  • PDF

J-integral for subsurface crack in circular plate with inner hole under rolling and sliding contact (구름 및 미끄럼 접촉하의 중공원판의 표면하층균열에 대한 J-적분)

  • Lee, Kang-Yong;Kim, June-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1149-1155
    • /
    • 1997
  • J-integral for a subsurface horizontal crack in a circular plate with an inner hole under rolling line contact is evaluated according to loading positions with various load conditions, crack length and crack location. Two-dimensional crack is modeled, and the relation between Tresca stress for uncracked model and J-integral is discussed. The loading location which gives the maximum J-integral depends on load condition and crack location, and the presence of friction force increases Tresca stress and J-integral near the surface. Regardless of friction force, crack location that gives maximum J-integral is the same as that of maximum Tresca stress in an uncracked model, and the value of J-integral is propotional to crack length. It is also showed that the variation of an inner radius of a disk does not effect J-integral value.

Contact Pressure of Non-Pneumatic Tires with Auxetic Honeycomb Spoke (음의 각을 가지는 허니컴 스포크를 사용한 비 공압타이어의 접지압 분포)

  • Kim, Kwangwon;Kim, Dooman
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • An airless tire has advantages over the conventional pneumatic tire in terms of flat proof and maintenance free. According to the recently disclosed inventions on the airless tire, non-pneumatic tire (NPT) consists of the flexible polygon spokes. Considering the NPT structure, the spokes undergo the tension-compression cyclic loading while the tire rolls. Therefore the spokes of NPT are required to have both stiffness and resilience under the cyclic tensile-compressible loading. In general, if a material has a high stiffness, it shows a low elastic strain limit. In this paper, using the auxetic honeycomb structure with negative poissons's ratio, the spokes of NPT tire are designed to have both stiffness and resilience. Finite element based numerical simulation of the contact pressure of a NPT is carried out with ABAQUS.

  • PDF

A Study on Rolling Contact Fatigue of Rail by Damage Mechanics (손상역학에 의한 레일의 구름접촉피로 연구)

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.931-937
    • /
    • 2008
  • The rail/wheel rolling contact affects the microstructure in the surface layer of rail. Recently. continuum damage mechanics allows us to describe the microprocesses involved during the straining of materials and structures at the macroscale. Elastic and plastic strains. the corresponding hardening effects are generally accepted to be represented by global continuum variables. The purpose of continuum damage mechanics is to introduce the possibility of describing the coupling effects between damage processes and the stress-strain behavior of materials. In this study. the continuum damage mechanics caused by elastic deformation was briefly introduced and applied to the fatigue damage of the rails under the condition of cyclic loading. The material parameter for damage analysis was first determined so that it could reproduce the life span under the compressive loading in the vicinity of fatigue limit. Some numerical studies have been conducted to show the validity of the present computational mechanics analysis.

Analysis of Elasto-Plastic Dynamic Behaviour of Plate Subjected to Load by Low Velocity Impact (저속충격 하중을 받는 판의 탄소성 동적거동 해석)

  • Huh, Gyoung-Jae;Dokko, Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.158-164
    • /
    • 2000
  • In this study a computer program is developed for analyzing the elasto-plastic dynamic behaviors of the plate subjected to line-loading by a low-velocity impactor. The equilibrium equation associated with the Hertzian contact law is formulated to evaluate the transient dynamic behaviour of the impacted plate. Compared with an elastic analysis, the effects of material plasticity are presented. Consequently, in the case of elasto-plastic analysys, impulse decreases, displacements increase and contact time duration is longer than the elastic case for same finite element model. And the time variation of the impacting load is not significant due to the plasticity except at the beginning of impact duration, and the induced stresses of the plate are more realistic.

  • PDF

Contact surface element method for two-dimensional elastic contact problems

  • Liu, Zhengxing;Yang, Yaowen;Williams, F.W.;Jemah, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.363-375
    • /
    • 1998
  • The stiffness matrix of a two-dimensional contact surface element is deduced from the principle of virtual work. The incremental loading procedure used is controlled by displacement and stress. Special potential contact elements are used to avoid the need to rearrange the FEM mesh due to variations of the contact surface as contact develops. Published results are used to validate the method, which is then applied to a turbine to solve the contact problem between the blade root and rotor in the region in which a 'push fit' connects the blade to its rotor.

Study on the Film Thickness and Pressure of the Transient Line Contact Elastohydrodynamic Lubrication (비정상 상태의 선접촉 탄성유체윤활 유막두께 및 유막압력 특성연구)

  • Cho, Jae-Cheol;Jang, Si-Youl
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.335-341
    • /
    • 2009
  • Elastohydrodynamic lubrication (EHL) analysis shows that film thickness is very flat in the contact area and pressure distribution is somehow similar to that of Hertzian contact pressure except the outlet region with pressure spike. These typical patterns of EHL film thickness and pressure are the cases under the steady contact conditions of applied loads and speeds. However, many engineering contacts are rather under the conditions of varying loads and contact speeds, and therefore the predictions for endurance life and performance of machine elements with steady EHL analysis are not suitable in many occasions. This study shows the differences in film thickness formation and pressure distribution between steady and transient contact conditions in several contact cases.

Measurement of Shear Contact Characteristics on Mechanical Joints (기계 조인트의 전단 컨택 특성 측정)

  • Lee, Chul-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1350-1353
    • /
    • 2007
  • An experimental method based on contact resonance is developed to extract the contact parameters of mechanical joints under various clamped conditions. Mechanical joint parameters of shear contact stiffness and damping were extracted for different physical joint parameters such as surface finish of the mating surfaces, the presence of lubrication, the effect of the clamping pressure, and shear load. It was found that the shear contact stiffness values decreased with increasing clamping load and increased with increasing shear loading. Contact damping ratio values were almost constant with clamping load, but decreased with increasing shear load. Moreover, rough surfaces exhibited the highest shear stiffness and contact damping compared to smooth surfaces.

  • PDF

Contact fatigue and strength degradation in dental ceramics (치아용 세라믹스에서의 접촉피로 및 강도저하)

  • 정연길;이수영;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.5
    • /
    • pp.527-533
    • /
    • 1999
  • Hertzian indentation tests with spherical indenters in water were conducted to examine the contact fatigue in three dental ceramics, such as feldspathic porcelain, micaceous glass-ceramic (MGC) and glass-infiltrated alumina, which was used as dental restorations, and evaluated the effect of contact damage on strength. Initial damage was dependent of microstructure, showing cone cracks of brittle behavior in the feldspathic porcelain and deformation of quasi-plastic behavior in the MGC, with an intermediate case in the glass-infiltrated alumina. However, as increasing the number of cyclic loading (n=1~n =$10^6$)all materials showed an abrupt strength degradation, at which fracture was originated from damage in the contact fatigue. There were two strength degradation with increasing the number of cyclic loading in specific loads (200N, 500N, 1000N):first was from the cone cracks, and second was from the radial cracks created by cyclic loading. The radial cracks, once formed, led to rapid degradation in strength properties, Finally the material was failed at the high number of cyclic loading. Strength degradation with indentation load at fixed number of cyclic loading indicated that the feldspathic porcelain should be highly damage tolerant to the contact fatigue.

  • PDF