• Title/Summary/Keyword: Contact phenomenon

Search Result 374, Processing Time 0.026 seconds

A New Algorithm of Dynamic Characteristic Analysis for Running Safety of Tilting Vehicle (틸팅차량 주행안전성을 위한 동특성 해석 알고리즘에 관한 연구)

  • Chung Jong-Duk;Chun Hong-Jung;Kim Sun-Cheol;Han Seok-Yoon
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.131-139
    • /
    • 2005
  • It is very difficult to analyze the dynamic characteristic because tilting vehicle is a very complex system which are connected various mass element with tilting system. To realize and analyze actual phenomenon has restriction that usual commercial software calculates creep force under creep theory about wheel -rail contact mechanism as basic analyzing, and approach about contact point are based on two dimensional non-linear contact theory and simplified Hertzian contact which considers just displacement change on the YZ plain. Therefore, to solve these problems there should be a new approach difference with existing one. In this research, a new algorithm for finding wheel-rail contact position, calculation method of contact force and applied force will be presented.

  • PDF

A Study on The Improvement of Profile Tilting or Bottom Distortion in HARC (높은 A/R의 콘택 산화막 에칭에서 바닥모양 변형 개선에 관한 연구)

  • Hwang, Won-Tae;Kim, Gli-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.389-395
    • /
    • 2005
  • The etching technology of the high aspect ratio contact(HARC) is necessary at the critical contact processes of semiconductor devices. Etching the $SiO_{2}$ contact hole with the sub-micron design rule in manufacturing VLSI devices, the unexpected phenomenon of 'profile tilting' or 'bottom distortion' is often observed. This makes a short circuit between neighboring contact holes, which causes to drop seriously the device yield. As the aspect ratio of contact holes increases, the high C/F ratio gases, $C_{4}F_{6}$, $C_{4}F_{8}$ and $C_{5}F_{8}$, become widely used in order to minimize the mask layer loss during the etching process. These gases provide abundant fluorocarbon polymer as well as high selectivity to the mask layer, and the polymer with high sticking yield accumulates at the top-wall of the contact hole. During the etch process, many electrons are accumulated around the asymmetric hole mouth to distort the electric field, and this distorts the ion trajectory arriving at the hole bottom. These ions with the distorted trajectory induce the deformation of the hole bottom, which is called 'profile tilting' or 'bottom distortion'. To prevent this phenomenon, three methods are suggested here. 1) Using lower C/F ratio gases, $CF_{4}$ or $C_{3}F_{8}$, the amount of the Polymer at the hole mouth is reduced to minimize the asymmetry of the hole top. 2) The number of the neighboring holes with equal distance is maximized to get the more symmetry of the oxygen distribution around the hole. 3) The dual frequency plasma source is used to release the excessive charge build-up at the hole mouth. From the suggested methods, we have obtained the nearly circular hole bottom, which Implies that the ion trajectory Incident on the hole bottom is symmetry.

Simulation of Capillary Flow Along a Slot-die Head for Stripe Coatings (Stripe 코팅용 슬롯 다이 헤드 모세관 유동 전산모사)

  • Yoo, Su-Ho;Lee, Jin-Young;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.92-96
    • /
    • 2019
  • In the presence of ${\mu}-tip$ embedded in a slot-die head for stripe coatings, there arises the capillary flow that limits an increase of the stripe density, which is required for the potential applications in organic light-emitting diode displays. With an attempt to suppress it, we have employed a computational fluid dynamics software and performed simulations by varying the ${\mu}-tip$ length and the contact angles of the head lip and ${\mu}-tip$. We have first demonstrated that such a capillary flow phenomenon (a spread of solution along the head lip) observed experimentally can be reproduced by the computational fluid dynamics software. Through simulations, we have found that stronger capillary flow is observed in the hydrophilic head lip with a smaller contact angle and it is suppressed effectively as the contact angle increases. When the contact angle of the head lip increases from $16^{\circ}$ to $130^{\circ}$, the distance a solution can reach decreases sharply from $256{\mu}m$ to $44{\mu}m$. With increasing contact angle of the ${\mu}-tip$, however, the solution flow along the ${\mu}-tip$ is disturbed and thus the capillary flow phenomenon becomes more severe. If the ${\mu}-tip$ is long, the capillary flow also appears strong due to an increase of flow resistance (electronic-hydraulic analogy). It can be suppressed by reducing the ${\mu}-tip$ length, but not as effectively as reducing the contact angle of the head lip.

On the Slipping Phenomenon in Adhesive Complete Contact Problem (응착 완전 접촉 문제에서 접촉면 미끄럼 현상에 관한 고찰)

  • Kim, Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.147-152
    • /
    • 2020
  • This paper is within the framework of an adhered complete contact problem wherein the contact between a half plane and sharp edged indenter, both of which are elastic in character, is constituted. The eigensolutions of the contact shear and normal stresses, σrq and σq, respectively, are evaluated via asymptotic analysis. The ratio of σrqqq is investigated and compared with the coefficient of friction, μ, of the contact surface to observe the propensity to slip on the contact surface. Interestingly, there exists a region of |σθθ| ≥ |μ|. Thus, slipping can occur, although the problem is solved under the condition of an adhered contact without slipping. Given that a tribological failure potentially occurs at the slipping region, it is important to determine the size of the slipping region. This aspect is also factored in the paper. A simple example of the adhered contact between two elastically dissimilar squares is considered. Finite element analysis is used to evaluate generalized stress intensity factors. Furthermore, it is repeatedly observed that slipping occurs on the contact surface although the size of it is extremely small compared with that of the contacting squares. Therefore, as a contribution to the field of contact mechanics, this problem must be further explained logically.

Simulation of Capillary Phenomenon for Solution Coating of High-uniformity Organic thin Films (고균일 유기박막 코팅을 위한 모세관 현상 전산모사)

  • Shin, Dong-Kyun;Hong, Gi-Young;Park, Jong-Woon;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.106-111
    • /
    • 2017
  • When a substrate with a pixel-defining layer (bank) is coated, there arises capillary force due to surface tension and adhesive forces between a solvent and the bank layer. It brings in a degradation of film thickness and emission uniformities within pixels. With an attempt to suppress it, we have performed fluid flow simulations of capillary arise by varying the contact angle of bank and the bank structure. We have first demonstrated that the fluid flow model can reproduce the capillary phenomenon that was observed experimentally. It has been found that capillary arise can be suppressed using a hydrophobic material for the bank layer. Furthermore, it was suppressed by tilting the sidewalls outwardly (i.e., using a positive photoresistor). We can obtain very uniform films when the slope is $50^{\circ}$ with the contact angle of $40^{\circ}$.

  • PDF

A Experimental Study on Wearing Phenomenon of Cu-type Wearing Slider for the Rail Motor Car's Pantograph (집전장치용 동계 주습판의 마모현상에 관한 실험적 연구)

  • Kim, Kyung-Seob
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.224-230
    • /
    • 2012
  • The wearing slider of the rail motor car's pantograph is considerable changed by the type and the material properties. Especially, precipitation and arc influences are main factors decided to life time of wearing slider and contact wire. This study is wearing phenomenon analysis of Cu-type wearing slider with high electric conductivity and resistance arc through experiment by running train. Author observed that wearing phenomenon of Cu-type wearing slider with normal and abnormal wearing characteristics and comparatively analysis precipitation, mileage and weight influences of exchanged Cutype and Fe-type wearing sliders. In this paper result showed that necessity for the application which is the Fe-type of wearing slider had superior wear resisting capacity etc., through tribology approach.

Effect of Electrical Properties on the EPDM- $Al(OH)_3$ Composite by UV Accelerated weathering (Al(OH)3가 EPDM의 자외선 촉진열화에 미치는 전기적 특성평가)

  • Shim, Dae-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.243-247
    • /
    • 2003
  • The effect of accelerated weathering(UV) on three type of ethylene propylene diene monomer(EPDM) composite used for higher voltage insulator were investigated by weather-emoter. For weatherability of EPDM composite, surface resistance, dielectric breakdown strength, change of contact angle, surface composition were measured according to UV accelerated weathering time. From the resort of the measurement of surface resistivity, contact angle of EPDM composite decreased and showed chalking and cracking phenomenon when UV weathweing time was for 1500 h and 2000 h. The analysis of surface atomic composition indicated that surface aluminiu(Al) content was detected due to chalking phenomenon after 1500 h of UV weathering, Oxygen content of all composite increased due to the oxidation.

  • PDF

An Analysis of Fretting by the Frictional Contact (摩擦 接觸으로 인한 Fretting에 대한 연구)

  • 이대희;최동훈;윤갑영;임장근
    • Tribology and Lubricants
    • /
    • v.6 no.1
    • /
    • pp.99-107
    • /
    • 1990
  • Most of machines and structures contain the elements which contact each other directly. When these elements subjected to vibration or repeated load, local relative movement occurs between the elements in contact which results in, a kind of wear. In order to know the factors which govern fretting, we have to analyze the phenomenon of microslip which causes fretting by using a general and efficient method from a viewpoint of contact mechanics. Based on the results of analysis, it is necessary to propose the way of minizing fretting which is one of the most significant surface failure. In this report, a general and efficient algorithm is applied to analyze the contact problem of the bolted joint, which is one of the typical elements damaged by fretting, with ratios of plate thickness, the ratios of Young's moduli, the ratios of the plate thickness to bolt radius varied. Finally, the ways of minizing fretting for the boked joint are suggested.

Analysis of conducted noise on modeling methods for loss of contact during traction of high-speed rail vehicle (고속전철 주행시 이선현상 모델링 방법에 따른 전도성 노이즈 해석)

  • Kim, Jae-Moon;Kim, Yang-Soo;Chang, Chin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.09a
    • /
    • pp.72-75
    • /
    • 2008
  • The Electromagnetic Interference(EMI) in railway applications is largely due to doing the power conversion for traction and Auxiliary system on the Highspeed Electric Multiple Unit-400X(HEMU-400X). In order to research on EMI in railway applications, it were included how much the HEMU-400X generates it and it has an effect on the equipments of electric system which resulted from Power Line Disturbance (PLD) phenomenon by the loss of contact during its running. In this study, the dynamic characteristic of a contact wire and pantograph suppling electrical power to high-speed trains are investigated. The analysis of the loss of contact based on Power Simulator program software is performed to develop power line disturbance model suitable for high speed operation. It is confirmed that a contact wire and pantograph model are necessary for studying the dynamic behavior of the pantograph system.

  • PDF

The Molecular Structures of Poly(3-hexylthiophene) Films Determine the Contact Properties at the Electrode/Semiconductor Interface

  • Park, Yeong Don
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2277-2280
    • /
    • 2014
  • The contact properties between gold and poly(3-hexylthiophene) (P3HT) films having either of two distinct molecular orientations and orderings were investigated. Thermal treatment increased the molecular ordering of P3HT and remarkably reduced the contact resistance at the electrode/semiconductor interface, which enhanced the electrical performance. This phenomenon was understood in terms of a small degree of metal penetration into the P3HT film as a result of the thermal treatment, which formed a sharp interface at the contact interface between the gold electrode and the organic semiconductor.