• Title/Summary/Keyword: Contact loss

Search Result 599, Processing Time 0.021 seconds

Development of simulator by induced contact loss phenomenon for high-speed train operation (고속전철 주행에 따른 이선현상 모의 시뮬레이터 개발)

  • Kim, Jae-Moon;Kim, Yang-Soo;Kim, Chul-Soo;Chang, Chin-Young;Kim, Youn-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.499-503
    • /
    • 2009
  • In this study, the dynamic characteristic of a contact wire and pantograph suppling electrical power to high-speed trains are investigated from an electrical response point of view. To analysis power line disturbance by induced contact loss phenomenon for high speed operation, a hardware Simulator which considered contact loss between contact wire and the pantograph as well as contact wire deviation is developed. It is confirmed that a contact wire and pantograph model are necessary for studying the dynamic behavior of the pantograph system. One of the most important needs accompanied by increasing the speed of high-speed train is reduced that an arc phenomenon by loss of contact brings out EMI. In case of a high-speed train using electrical power, as comparison with diesel rolling stock, PLD(Power Line Disturbance) such as harmonic, transient voltage and current, EMI, dummy signal injection etc usually occurs. Throughout experiment, it is verified that an arc phenomenon is brought out for simulator operation and consequently conducted noise is flowed in electric circuit by power line disturbance.

  • PDF

Analysis of Contact Loss Arc Spectrum between Contact Wire and Pantograph Material using a Spectrometer (광계측기를 이용한 전차선-팬터그래프 재질별 이선아크 스펙트럼 분석)

  • Chang, Chin-Young;Jung, No-Geon;Park, Jong-Gook;Koo, Kyung-Wan;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1803-1808
    • /
    • 2013
  • To maintain contact between catenary and pantograph copper is important in order to transmit power smoothly on Current collection system. But, Arc discharge with strong light is generated because of contact loss. Therefore, Arc discharge detection is important measurement factor judging performance of current collection system. In this paper, It is described to results of arc discharge applying UV detection technology using arc generator. And Arc discharge was detected using the most commonly used processing catenary and rigid catenary and pantograph copper of electric rolling stock for securing arc detection instrument reliability. Results of contact loss detection instrument in this paper will be used for maintenance of current collection quality and system.

On the Implementation of an Advanced Judgement Algorithm for Contact Loss of Catenary System (전차선의 집전상태 판단 알고리즘 구현)

  • Park, Young;Jung, Ho-Sung;Yun, Il-Kwon;Kim, Wonha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.850-854
    • /
    • 2014
  • Analyzing dynamic performance between pantograph and contact wire depends on mechanical and electrical conditions such as contact force, currents, aerodynamics of pantograph and tension of overhead contact wire. For the characteristic of dynamic performance between pantograph and overhead contact wire, various evaluation systems are used to measuring of the interaction of the contact line and the pantograph. Among the various methods, the contact force and percentage of arcing are intended to prove the safety and the quality of the current collection system on the train. However, these methods are only capable of measuring on the train which are installed measurement systems. Therefore in this paper, a track-side monitoring system was implemented to measure electrical characteristics from active overhead contact wire systems in order to constantly estimate current collection performance of railway operation. In addition, a method to analyze loss of contact phenomena was proposed. According to simulation results, the proposed system was capable of measuring abnormal electrical behavior of pantograph and contact wires on the track-side. The advantage of the proposed system is possible to detect loss of contact or any other electrical abnormalities of all types of trains within sections from sub to sub without the need to install any on-board equipment on trains.

A study on vibrational characteristics of the overhead-line (가선시스템의 진동특성 연구)

  • Lee Eung-Shin;Cho Yong-Hyeon;Park Sung-Yong;Jeon Byung-Uk;Lee Jang Mu
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.152-157
    • /
    • 2005
  • Recently, higher speeds have been promoted in old overhead-lines. For high-speed operation in electric railways, increasing contact loss of the pantograph is one of the most important subjects. The contact loss causes power interruption and increases wear of contact strips and contact wires. In order to investigate the causes of contact loss and to work out effective improvement methods, theoretical analyses, experiments have been carried out. First of all, the wave propagating velocity (phase velocity) and characteristics of contact wire are one of the important indices for the current collecting performance. In this paper, mathematical formula arc derived for the prediction of the traveling wave velocity. The measured values in the experiment agree well with the theoretical predictions.

  • PDF

Arc Detection System using a Spectrometer for Status Monitoring of a Rigid Catenary

  • Jung, No-Geon;Kim, Jae-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2419-2425
    • /
    • 2017
  • In this paper, a system for the precise detection of arcs is proposed for a rigid catenary using a spectrometer. For this purpose, a miniature rigid catenary contact-loss simulator was used. Experiments were performed by varying the amplitude of the excitation frequency with which a real arc can occur using a simulator in the range of 5 to 15 mm. The range of the radiated wavelength of the copper, which is a material in the rigid catenary, and the irradiance were measured using a spectrometer according to the generated contact loss. In addition, the amount was monitored over time and its characteristics were analyzed. The voltage and current of the load were analyzed when the arc occurred due to contact loss. The analytical results will be applied to detect rigid catenary arcs and used as a monitoring system for real vehicles developed in the future. This will prevent abrasion and disconnection in rigid catenary systems.

A Study on the Application of TEO and STFT Signal Processing Techniques for Detection of Electric Railway Contact Loss (전기철도차량 이선 현상 검측을 위한 TEO 및 STFT 신호처리기법 적용에 관한 연구)

  • Jung, No-Geon;Park, Chul-Min;Lee, Jae-Bum;Park, Young;Shin, Seung-kwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1530-1535
    • /
    • 2018
  • In this paper, A technique for detecting contact loss at the input power of a railway vehicle has been studied when the contact loss occurs in the feed system. The impedance of the actual railway line was applied to the modeling of the feed system, and modeling was performed based on the performance of the electric railway vehicle. The input voltage and current of the railway vehicle through modeling were analyzed by applying TEO and STFT signal processing technique.

Analysis of conducted noise on modeling methods for loss of contact during traction of high-speed rail vehicle (고속전철 주행시 이선현상 모델링 방법에 따른 전도성 노이즈 해석)

  • Kim, Jae-Moon;Kim, Yang-Soo;Chang, Chin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.09a
    • /
    • pp.72-75
    • /
    • 2008
  • The Electromagnetic Interference(EMI) in railway applications is largely due to doing the power conversion for traction and Auxiliary system on the Highspeed Electric Multiple Unit-400X(HEMU-400X). In order to research on EMI in railway applications, it were included how much the HEMU-400X generates it and it has an effect on the equipments of electric system which resulted from Power Line Disturbance (PLD) phenomenon by the loss of contact during its running. In this study, the dynamic characteristic of a contact wire and pantograph suppling electrical power to high-speed trains are investigated. The analysis of the loss of contact based on Power Simulator program software is performed to develop power line disturbance model suitable for high speed operation. It is confirmed that a contact wire and pantograph model are necessary for studying the dynamic behavior of the pantograph system.

  • PDF

SPIN LOSS ANALYSIS OF FRICTION DRIVES: SPHERICAL AND SEMI-SPHERICAL CVT

  • Kim, J.;Choi, K.-H.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.165-172
    • /
    • 2003
  • This article deals with the spin loss analysis of friction drive CVTs, especially for the cases of S-CVT and SS-CVT. There are two main sources of power loss resulting from slippage in the friction drive CVT, spin and slip loss. Spin loss, which is also a main design issue in traction drives, results from the elastic contact deformation of rotating bodies having different rotational velocities. The structure and operating principles of the S-CVT and SS-CVT are first reviewed briefly. And to analyze the losses resulting from slippage, we reviewed previous analyses of the friction mechanism. A modified classical friction model is proposed, which describes the friction behavior including Stribeck (i.e., pre-sliding) effect. It is also performed an in-depth study for the velocity fields generated at the contact regions along with a Hertzian analysis of deflection. Hertzian results were employed to construct the geometric parameters and normal pressure distributions of the contact surface with respect to elastic and plastic deformations. With analytic formulations of the relative velocity field, deflection, and friction mechanism of the S-CVT and SS-CVT, quantitative analyses of spin loss for each case are carried out. As a result, explicit models of spin loss were developed.

A Theory of Nonlinear Grinding Chatter Due to Loss of Contact between Grinding Wheel and Workpiece (接觸 離脫 現象 에 의한 非線型 硏削 채터의 解析 理論)

  • 김옥현;김성청;임영호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.706-713
    • /
    • 1985
  • It is clear that when the amplitude of grinding chatter increases enough the contact between grinding wheel and workpiece cannot be sustained and the loss of contact occurs during a period of grinding chatter. In this paper the behavior of nonlinear grinding chatter due to the loss of contact has been studied. A nonlinear grinding chatter loop is developed where the loss of contact is considered as a nonlinear element of asymmetrical gain. The analysis is carried out in the time domain by numerical simulation and also in the complex domain by use of describing function method. The results show that two typical patterns of nonlinear grinding chatter can originate from the nonlinearity. One is an irregular chatter frequency at starting stage decreases to the natural frequency of grinding structure while the chatter amplitude increases and decreases repeatedly. The other is a limit cycle chatter of which the amplitude and frequency converge to constant and remain. This nonlinear behavior of grinding chatter has been well analyzed by the describing function method and confirmed by the numerical simulation.

A Study on the Elasticity Disuniformity for Catenary using by Beam Model (빔 모델을 이용한 전차선 불균일율에 관한 연구)

  • 권삼영;이기원;조용현;정흥채
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.209-217
    • /
    • 1999
  • A catenary system should be designed to be an uniform elasticity over a span in order to maintain the lowest possible loss of contact between a pantograph and a contact wire. A elasticity disuniformity of a catenary can be regarded as a important design factor used for predicting the current collection performance for a catenary. There are a couple of formulas to calculate elasticity disuniformity of a catenary according to the literature survey, The effectiveness of these formulas is reviewed by performing catenary elasticity and loss of contact analysis for 5 different configurations of catenary systems using a beam element based FEM program, KRRI developed program, and the loss of contact by GASENDO, RTRI developed program, respective]y. The results reveals that these formulas are not suitable to predict the current collection performance for a catenary. Therefore, a new formula based on the standard deviation of the elasticity over a span is proposed in this study. The analysis results show that the new formula for an elasticity disuniformity of a catenary is very effective in predicting the current collection performance for a catenary.

  • PDF