• Title/Summary/Keyword: Contact Printing

Search Result 241, Processing Time 0.036 seconds

Comparison of Surface Characteristics According to 3D Printing Methods and Materials for the Fabrication of Microfluidic Systems (미세유체시스템 제작을 위한 3D 프린팅 방식 및 소재 별 표면특성 비교)

  • Bae, Seo Jun;Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.706-713
    • /
    • 2019
  • In this study, basic research was conducted to provide guidelines for selecting printers and materials suitable for each application case by analyzing 3D printing method and surface characteristics of materials suitable for microfluidic system. We have studied the surface characteristics according to the materials for the two typical printing methods: The most commonly used method of Fused Deposition Modeling (FDM) printing and the relatively high resolution method of Stereolithography (SLA) printing. The FDM prints exhibited hydrophilic properties before post - treatment, regardless of the material, but showed hydrophobic properties after post - treatment with acetone vapor. It was confirmed by the observation of surface roughness using SEM that the change of the contact angle was due to the removal of the surface structure by post-treatment. SLA prints exhibited hydrophilic properties compared to FDM prints, but they were experimentally confirmed to be capable of surface modification using hydrophobic coatings. It was confirmed that it is impossible to make a transparent specimen in the FDM method. However, sufficient transparency is secured in the case of the SLA method. It is also confirmed that the electroporation chip of the digital electroporation system based on the droplet contact charging phenomenon was fabricated by the SLA method and the direct application to the microfluidic system by demonstrating the electroporation successfully.

Influence of Metal-Coating Layer on an Electrical Resistivity of Thick-Film-Type Thermoelectric Modules Fabricated by a Screen Printing Process (스크린 프린팅 공정에 의해 제조된 열전후막모듈의 전기저항에 미치는 금속코팅층의 영향)

  • Kim, Kyung-Tae;Koo, Hye-Young;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.423-429
    • /
    • 2011
  • Thermoelectric-thick films were fabricated by using a screen printing process of n and p-type bismuth-telluride-based pastes. The screen-printed thick films have approximately 30 ${\mu}m$ in thickness and show rough surfaces yielding an empty gap between an electrode and the thick film. The gap might result in an increase of an electrical resistivity of the fabricated thick-film-type thermoelectric module. In this study, we suggest a conductive metal coating onto the surfaces of the screen-printed paste in order to reduce the contact resistance in the module. As a result, the electrical resistivity of the thermoelectric module having a gold coating layer was significantly reduced up to 30% compared to that of a module without any metal coating. This result indicates that an introduction of conductive metal layers is effective to decrease the contact resistivity of a thick-film-typed thermoelectric module processed by screen printing.

Recent Advances in the Ink-Jet Printing Ceramic Tile Using Colorant Ceramic-ink (고화도 발색세라믹잉크를 이용한 잉크젯프린팅 도자타일 연구동향)

  • Kim, Jin-Ho;Noh, Hyung-Goo;Kim, Ung-Soo;Cho, Woo-Suk;Choi, Jung-Hoon;Lee, Yong-Ouk
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.498-503
    • /
    • 2013
  • Over the past decade, the feasibility of using ink-jet printing for the decoration of porcelain tiles has been explored, and significant advances have been made regarding the technologies underlying printing system and materials. An ink-jet printing system for porcelain tiles has many advantages compared with a conventional printing system, including the following: (1) it is a digital process; (2) it uses non-contact printing; (3) it allows random image generation; (4) it is a highly efficient process (reduced production cost); (5) it offers massive and continuous production; and (6) it uses inorganic pigment colorants. For these reasons, ink-jet printing systems for porcelain tiles have been commercialized and are at present rapidly spreading toceramics-leading countries such as Spain, Italy, China and Japan. We also developed a proprietary system involving a piezo-electric drop-on-demand method and an ink-circulation step. The resolution of this system is greater than 360 dpi after a heat treatment and the maximum printable width is 600 mm, even when setting the printing head unit with four digital colors (cyan, magenta, yellow, and black). In addition, we systematically developed ceramic colorant-containing inks and tile-printing technology applicable to our ink-jet printing system.

Characterization of Plate Wear and Printing Quality of Concave Polymer Printing Plate Prepared by Diamond-Like Carbon Deposition Conditions (DLC(Diamond-Like Carbon) 코팅에 의한 오목 폴리머인쇄판의 내구성 및 인쇄 품질 특성)

  • Yoo, Han-Sol;Kim, Jun-Hyung;Moon, Kyoung-Il;Hwang, Taek-Sung;Lee, Hyok-Won
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.552-561
    • /
    • 2012
  • Diamond-like carbon (DLC) films have been widely used in many industrial applications because of their outstanding mechanical and chemical properties like hardness, wear resistance, lubricous property, chemical stability, and uniformity of deposition. Also, DLC films coated on paper, polymer, and metal substrates have been extensively used. In this work, in order to improve the printing quality and plate wear of polymer printing plates, different deposition conditions were used for depositing DLC on the polymer printing plates using the Pulsed DC PECVD method. The deposition temperature of the DLC films was under $100^{\circ}C$, in order to prevent the deformation of the polymer plates. The properties of each DLC coating on the polymer concave printing plate were analyzed by measuring properties such as the roughness, surface morphology, chemical bonding, hardness, plate wear resistance, contact angle, and printing quality of DLC films. From the results of the analysis of the properties of each of the different DLC deposition conditions, the deposition conditions of DLC + F and DLC + Si + F were found to have been successful at improving the printing quality and plate wear of polymer printing plates because the properties were improved compared to those of polymer concave printing plates.

Ceramic Ink-jet Printing on Glass Substrate Using Oleophobic Surface Treatment

  • Lee, Ji-Hyeon;Hwang, Hae-Jin;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.75-80
    • /
    • 2016
  • Ink-jet printing has become a widespread technology with the society's increase in aesthetic awareness. Especially, ink-jet printing using glazed ceramic ink can offer huge advantages including high quality decoration, continuous processing, glaze patterning, and direct reproduction of high resolution images. Recently, ceramic ink-jet printing has been rapidly introduced to decorate the porcelain product and the ceramic tiles. In this study, we provide an effective method to apply ceramic ink-jet decorations on the glass substrates using a oleophobic coating with perfluorooctyl trichlorosilane. The ink-jet printed patterns were much clearer on the oleophobically coated glass surface than the bare glass surface. The contact angle of the ceramic ink was maximized to the value of $64.0^{\circ}$ on the glass surface, when it was treated with 1 vol% PFTS solution for 1 min. The effects of the printing conditions and firing process on the ink-jet printed patterns on the oleophobically coated glass were also investigated.

Development of Reinforced Bio-filament Composites Composed of Agricultural By-product for 3D Printing Technologies

  • Cheong, Kyu Min;Kim, Hye Been;Seo, Yu Ri;Lim, Ki Taek
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.108-108
    • /
    • 2017
  • In this study, biocomposite filaments with agricultural by-products can be used in extrusion-based 3D (Three-dimensional) printing. Extrusion-based 3D printing stands as a promising technique owing to its versatility. We hypothesized that bio-filament composite consisted of something derived from agricultural by-products could be used as 3D printing materials that could overcome the drawbacks of PCL (poly-caprolactone). Bio-filament mixed with PCL and agricultural by-products was defined as r-PCL in this study. In order to find it out the optimal mixing ratio of filaments, we had investigated PCL, r-PCL 10%, r-PCL 20%, r-PCL 50% separately. The morphological and chemical characteristics of the filaments were analyzed by FE-SEM (Field emission scanning electron microscope) and EDX (Energy-dispersive X-Ray spectroscopy), and the mechanical properties were evaluated by stress-strain curve, water contact angle, and cytotoxicity analysis. Results of this study have been shown as a promising way to produce eco-friendly bio-filaments composite for FDM (Fused deposition modeling) method based 3D printing technology. Thus, we could establish biomimetic scaffolds based on bio-printer filaments mixed with agricultural by-product.

  • PDF

A Study on the Development of Soft Stamping Printing Equipment (소프트 스탬핑 프린팅 장비 개발에 관한 연구)

  • Jang, Nam-Eun;Kim, Nam-Kuk;Lee, Youn-Seop;Kim, Youg-Tae;Shin, Kwan-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.259-262
    • /
    • 2009
  • Several universities in Korea are beginning studies related to soft stamping processes but since the studies are done with manual works thus systematic tests can't be performed due to difficulties in producing reproducible and repeatable fine patterns. Therefore, the phenomenon of destruction of the pattern forms of elastic polymers occurred during working because of inconsistent printing pressures and pinting time and there have been difficulties in maintaining flatness or producing uniform and fault-free fine structures in pinting large areas and also, there have been difficulties in multi-layered processes as patterns were changed by contacts in registering and errors in alignments. The purpose of development of this technology is to improve the process of soft lithography so that contacts between PDMS stamps and metal coated substrates in order to develop a stamp printing device that can not only shorten but also optimize processes, secure reproducibility and repeatability and is advantageous in printing large areas. Also, using this technology, this author is to develop equipment technologies and applied technologies for nano grade pattern printing processes with new concepts based on fine contact printing processes in order to apply them to diverse nano pattering processes.

  • PDF

Touchpad for Force and Location Sensing

  • Kim, Dong-Ki;Kim, Jong-Ho;Kwon, Hyun-Joon;Kwon, Young-Ha
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.722-728
    • /
    • 2010
  • This paper presents the design and fabrication model of a touchpad based on a contact-resistance-type force sensor. The touchpad works as a touch input device, which can sense contact location and contact force simultaneously. The touchpad is 40 mm wide and 40 mm long. The touchpad is fabricated by using a simple screen printing technique. The contact location is evaluated by the calibration setup, which has a load cell and three-axis stages. The location error is approximately 4 mm with respect to x-axis and y-axis directions. The force response of the fabricated touchpad is obtained at three points by loading and unloading of the probe. The touchpad can detect loads from 0 N to 2 N. The touchpad shows a hysteresis error rate of about 11% and uniformity error rate of about 3%.

Downscaling of self-aligned inkjet printed polymer thin film transistors

  • Noh, Yong-Young;Sirringhaus, Henning
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1564-1567
    • /
    • 2008
  • We demonstrate here a self-aligned printing approach that allows downscaling of printed organic thin-film transistors to channel lengths of 100 - 400 nm. A perfected down-scaled polymer transistors (L= 200 nm) showing high transition frequency over 1.5 Mhz were realized with thin polymer dielectrics, controlling contact resistance, and minimizing overlap capacitance via self-aligned gate configuration.

  • PDF

Design of Connectivity Test Circuit for a Direct Printing Image Drum

  • Jung, Seung-Min
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.43-46
    • /
    • 2008
  • This paper proposes an advanced test circuit for detecting the connectivity between a drum ring of laser printer and PCB. The detection circuit of charge sharing is proposed, which minimizes the influences of internal parasitic capacitances. The test circuit is composed of precharge circuit, analog comparator, level shifter. Its functional operation is verified using $0.6{\mu}m$ 3.3V/40V CMOS process parameter by HSPICE. Access time is100ns. Layout of the drum contact test circuit is $465{\mu}m\;{\times}\;117{\mu}m$.