• Title/Summary/Keyword: Contact Impact

Search Result 716, Processing Time 0.032 seconds

A Numerical Study on Droplet Deposition in a Micro-Groove (마이크로 Groove에서 액적충돌에 대한 수치적 연구)

  • Lee, Woo-Rim;Suh, Young-Ho;Sin, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.789-796
    • /
    • 2009
  • Microdroplet deposition in a micro-groove is studied numerically. The droplet shape is determined by a level-set method which is improved by incorporating a sharp-interface modeling technique for accurately enforcing the matching conditions at the liquid-gas interface and the no-slip and contact angle conditions at an immersed solid surface. The computations are carried out to investigate the droplet behavior derived by the interfacial characteristics between the liquid-gas-solid phases. The effects of contact angle, impact velocity and groove geometry on droplet deposition in a micro-groove are quantified.

Design of coil spring to reduce influence of multiple clearances in planar four bar mechanism (이차원 4링크 기구의 다중 간극들의 영향을 줄이기 위한 코일 스프링의 설계)

  • 강동중;이학수;윤용산
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1446-1454
    • /
    • 1990
  • A systematic method of design modification to reduce the influence of impact from multiple clearances in a planar four bar mechanism is developed. For this purpose, an optimization method is used with the objective function which is the linear sum of the Earles and Wu criteria for every joints with clearances. One coil spring is attached to a joint of limited range of revolution to reduce the undesirable dynamic effects due to clearances at joints. The stiffness of the coil spring and its pre-loading angle are chosen as design variables. A numerical example is taken for a four bar mechanism. The initial and modified mechanisms are compared using a clearance mechanism analysis technic to see the difference in dynamic effects due to contact loss. It is found that the modified mechanism produces much more smooth joint contact forces than the original design.

Hybrid impedance control for free and contact motion

  • Oh, Yonghwan;Chung, W. K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.448-451
    • /
    • 1995
  • A general task execution with hybrid impedance control method is addressed. The target impedance is expressed in the constraint frame. For the computational simplicity and the robustness improvement, disturbance observer scheme is used. To make stable contact with the environment, the large value of desired inertia gain for the force-controlled subspace is suggested. Numerical examples are given to show the performance of the proposed controller.

  • PDF

Study on Dynamic Characteristics of Delaminated Smart Composite Laminates (층간 분리가 있는 지능 복합재 적층판의 동적특성에 대한 연구)

  • Kim, Heung-Soo;Kim, Jae-Hwan;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.395-403
    • /
    • 2005
  • The dynamic characteristics of delaminated smart composite laminates are studied using animproved layerwise laminate theory. The theory is capable of capturing interlaminar shear stresses that are critical to delamination. The presence of discrete delamination is modeled through the use of Heaviside unit step functions. Stress free boundary conditions are enforced at all free surfaces. Continuity in displacement field and transverse shear stresses are enforced at each ply level. In modeling piezoelectric composite plates, a coupled piezoelectric-mechanical formulation is used in the development of the constitutive equations. Numerical analysis is conducted to investigate the effect of nonlinearity in the transient vibration of bimodular behavior caused by the contact impact of delaminated interfaces. Composite plates with delamination, subject to external loads and voltage history from surface bonded sensors, are investigated and the results are compared with corresponding experimental results and plates without delamination.

Modal Identification of a randomly excited 1-D structure using Scanned data (스캐닝 데이터를 이용한 랜덤 가진된 일차원 구조물의 모달 분석)

  • 경용수;왕세명;김상명;박기환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.241-246
    • /
    • 2002
  • Usually vibration properties are obtained from frequency response functions or impulse response functions of a system. Since the contact type sensors can affect the characteristics of vibrating systems, the non-contact type sensors such as laser Doppler vibrometer (LDV) are being widely used. Currently researches are being carried out in terms of modal analysis using a scanning vibrometer. For the continuous scan; the Chebyshev demodulation (or polynomial) is apparently suggested to extract the mode shapes. With single frequency sinusoidal excitation, this approach is well fitted. In this research, the Chebyshev demodulation technique has been applied to the impact excitation case. The vibration of the tested structure is modeled using impulse response functions. The technique is also adopted to the random excitation case. In order to verify the technique, a simply supported beam was chosen as the test rig. The calculation modules are developed by using MATLAB$\^$(R)/ in WindowsNT$\^$(R)/ environment.

  • PDF

Influences of Environmental Chemicals on Atopic Dermatitis

  • Kim, Kwangmi
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.89-96
    • /
    • 2015
  • Atopic dermatitis is a chronic inflammatory skin condition including severe pruritus, xerosis, visible eczematous skin lesions that mainly begin early in life. Atopic dermatitis exerts a profound impact on the quality of life of patients and their families. The estimated lifetime prevalence of atopic dermatitis has increased 2~3 fold during over the past 30 years, especially in urban areas in industrialized countries, emphasizing the importance of life-style and environment in the pathogenesis of atopic diseases. While the interplay of individual genetic predisposition and environmental factors contribute to the development of atopic dermatitis, the recent increase in the prevalence of atopic dermatitis might be attributed to increased exposure to various environmental factors rather than alterations in human genome. In recent decades, there has been an increasing exposure to chemicals from a variety of sources. In this study, the effects of various environmental chemicals we face in everyday life - air pollutants, contact allergens and skin irritants, ingredients in cosmetics and personal care products, and food additives - on the prevalence and severity of atopic dermatitis are reviewed.

Chemically Modified Superhydrophobic Zinc Oxide nanoparticle surface

  • Lee, Mi-Gyeong;Gwak, Geun-Jae;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.448-448
    • /
    • 2011
  • We investigated the fabrication method of superhydrophobic nanocoating prepared by a simple spin-coating and the chemisorption of fatty acid. The resulting coating showed a tremendous water repellency (static water contact angle = $154^{\circ}$) and the water contact angle can be modulated by changing the number of deposition cycles of ZnO and the carbon length of Self-Assembled Monolayers (SAM). Varying the number of deposition cycles of ZnO controlled the surface roughness, and affected to the superhydrophobicity. This simple coating method can be universally applicable to any substrates including flexible surfaces, papers and cotton fabrics, which can effectively be used in various potential applications. We also observed the thermal and dynamic stabilities of SAM on ZnO nanoparticles. The superhydrophobicic surface maintained its superhydrophobic properties below $250^{\circ}C$ and under dynamic conditions.

  • PDF

SUN INTERFEREN PREDICTIONS FOR THE KOMPSAT TT&C STATION

  • Lee, Byoung-Sun;Lee, Jeong-Sook
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.158-165
    • /
    • 1997
  • The Sun interference event predictions for the KOMPSAT TT&C station were performed to analyze the frequency of the event and the impact on the TT&C link. The KOMPSAT orbit was propagated including only J2 geopotential term for maintaining the Sun-synchronism and no other perturbations were included. Local time of ascending node of the KOMPSAT satellite was set to 10h50m00s. The TT&C station was assumed to locate in Taejon and have 9 meter antenna for S-band link. One year of simulation from 1999/07/01 were performed out of 3 year of mission lifetime of KOMPSAT satellite. Total four times of Sun interference events were occurred during 1 year of simulation and those lasted about 50 seconds altogether. The C/N degradation of the TT&C system was calculated about 4dB. The Sun interference event of 50 seconds of year are 0.0076 percents of the S-band contact time when the 30 minute of contact time is assumed in a day.

  • PDF

3D Finite element analysis of end - plate steel joints

  • Drosopoulos, G.A.;Stavroulakis, G.E.;Abdalla, K.M.
    • Steel and Composite Structures
    • /
    • v.12 no.2
    • /
    • pp.93-115
    • /
    • 2012
  • This paper presents a numerical investigation of the mechanical behaviour of extended end - plate steel connections including comparison with full size experiments. Contact and friction laws have been taken into account with nonlinear, three dimensional finite element analysis. Material and geometric nonlinearities have been implemented to the model, as well. Results are then compared with experimental tests conducted at the Jordan University of Science and Technology. According to the most significant observation of the analysis, a separation of the column flange from the extended end - plate occurs. Other important structural parameters of the connection, like the impact of some column stiffeners on the overall response, local buckling of the column and friction of the beam to column interface, have been examined as well.

Transient Analysis of Delaminated Smart Composite Laminates (층간 분리가 있는 지능형 복합재 적층판의 과도응답해석)

  • Kim, Heung-Su;Kim, Jae-Hwan;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.469-475
    • /
    • 2004
  • The transient analysis of delaminated smart composite laminates is studied using an improved layerwise laminate theory. The theory is capable of capturing interlaminar shear stresses that are critical to delamination. The presence of discrete delamination is modeled through the use of Heaviside unit step functions. Stress free boundary conditions are enforced at all fee surfaces. Continuity in displacement field and transverse shear stresses are enforced at each ply level. In modeling piezoelectric composite plates, a coupled piezoelectric-mechanical formulation is used in the development of the constitutive equations. Numerical analysis is conducted to investigate the effect of nonlinearity in the transient vibration of bimodular behavior caused by the contact impact of delaminated interfaces. Composite plates with delamination, subject to external loads and voltage history from surface bonded sensors, are investigated and the results are compared with corresponding experimental results and plates without delamination.

  • PDF