• 제목/요약/키워드: Contact Impact

Search Result 695, Processing Time 0.028 seconds

Impact Force Roconstruction and Impact Model Identification Using Inverse Dynamics of an Impacted Beam (역동역학을 이용한 충격을 받는 보의 충격력 복원 및 충격모델의 변수 파악)

  • 박형순;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.623-630
    • /
    • 1995
  • The impulse response functions (force-strain relations) for Euler-Bernoulli and Timoshenko beams are considered. The response of a beam to a transverse impact force is numerically obtained with the convolution approach using the impulse response function obtained by Laplace transform. Using this relation, the impact force history is determined in the time domain and results are compared with those from Hertz's contact law. The parameters of timpact force model are identified using the recovered force and compared with the Hertz's contact model. In order to verify the proposed algorithm, measurements were done using an impact hammer and a steel ball drop test and these results are also compared with the simulated values.

Analysis of low-velocity impact on composite sandwich panels using an assumed strain solid element (가정변형률 솔리드 요소를 이용한 복합재 샌드위치 평판의 저속충격 해석)

  • Park, Jung;Park, Hoon-Cheol;Yoon, Kwang-Joon;Goo, Nam-Seo;Lee, Jae-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.44-50
    • /
    • 2002
  • Low-velocity impact on composite sandwich panel has been investigated. Contact force is computed from a proposed modified Hertzian contact law. The Hertzian contact law is constructed by adjusting numerical value of the exponent and reducing the through-the- thickness elastic constant of honeycomb core. The equivalent transverse elastic constant is calculated from the rule of mixture. Nonlinear equation to calculate the contact force is solved by the Newton-Raphson method and time integration is done by the Newmark-beta method. A finite element program for the low-velocity impact analysis is coded by implementing these techniques and an 18-node assumed strain solid element. Behaviors of composite sandwich panels subjected to low-velocity impact are analyzed for various cases with different geometry and lay-ups. It has been found that the present code with the proposed contact law can predict measured contact forces and contact times for most cases within reasonable error bounds.

Feasibility Study of Friction Characteristics for Impact Analysis (충돌 해석 시 마찰 모델 적용을 위한 기초 마찰 시험 연구)

  • Lee, Kwang-Hee;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.37 no.3
    • /
    • pp.112-116
    • /
    • 2021
  • Appropriate friction model usage is important for impact analysis because the relative motions between parts that are in contact for very short durations can vary greatly depending on the friction model. Vehicle seat components that have significant effects on impact analysis are also considered. This paper presents an experimental investigation of various material contact pairs to obtain the friction parameters of the Benson exponential friction model for impact simulation. The Coulomb friction model has limitations for impact analysis because of singularity at zero velocity. Metal/nonmetal materials are prepared, and friction tests are conducted for various sliding speeds, loads, and lubrication conditions. The obtained data are used in the friction model to implement finite element analysis. The parameters of the friction model are obtained by the curve-fitting method. The experimental results show that the friction coefficient with metal/nonmetal contact pairs is stable regardless of the working conditions. The friction model used in this study can also be applied for finite element analysis of the crash conditions, where the friction changes abruptly at the contact interface; the obtained friction parameters are also expected to be more accurate with more precise tests under different working conditions. These results can help improve the accuracy of the finite element analysis.

Relationship between the Impact Peak Force and Lower Extremity Kinematics during Treadmill Running

  • Ryu, Ji-Seon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.3
    • /
    • pp.159-164
    • /
    • 2018
  • Objective: The aims of this study were to determine the impact peak force and kinematic variables in running speed and investigate the relationship between them. Method: Thirty-nine male heel strike runners ($mean\;age=21.7{\pm}1.6y$, $mean\;mass=72.5{\pm}8.7kg$, $mean\;height=176.6{\pm}6.1cm$) were recruited in this investigation. The impact peak forces during treadmill running were assessed, and the kinematic variables were computed using three-dimensional data collected using eight infrared cameras (Oqus 300, Qualisys, Sweden). One-way analysis of variance ANOVAwas used to investigate the influence of the running speed on the parameters, and Pearson's partial correlation was used to investigate the relationship between the impact peak force and kinematic variables. Results: The running speed affected the impact peak force, stride length, stride frequency, and kinematic variables during the stride phase and the foot angle at heel contact; however, it did not affect the ankle and knee joint angles in the sagittal plane at heel contact. No significant correlation was noted between the impact peak force and kinematic variables in constantrunning speed. Conclusion: Increasing ankle and knee joint angles at heel contact may not be related to the mechanism behind reducing the impact peak force during treadmill running at constant speed.

Development of 2-Dim Lagrangian Hydrocode and Application to Large Deformation Problems (2차원 Lagrangian Hydrocode 개발 및 대변형 해석)

  • Lee, Min-Hyung;Kim, Sung-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.409-415
    • /
    • 2003
  • The purpose of this paper is to develop the 2-Dim Lagrangian Hydrocode for the analysis of large deformations of solids with implementation of the contact algorithm. First, th e governing equations are discretized into a system of algebraic equations. For more accurate and robust contact force computation. the defense node contact algorithm was adopted and implemented. For the verification of the code developed, two cases are carried out; the Taylor-Impact test and two bodies impact. The von -Mises criterion is implemented into the code with the Shock equation of state. The simulation results show a good agreement compared with the published experimental data and results from the commercial code. It is necessary to implement several material models and failure models for applications to different impact and penetration problems.

Modeling impact force and transfer function for reducing relay impact noise (릴레이 충격 소음 저감을 위한 충격력과 전달함수 모델링)

  • Kim, Koo-Hwan;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.646-649
    • /
    • 2008
  • This study deals with mechanism of relay operation and modeling of transfer function between impact force and sound pressure due to the impact force in order to reduce relay noise. A collision between a moving-contact and fix-contact produces impact noise. Therefore impact noise of relay is determined by not only excitation force but also transfer function from impact force to noise. In this study, we find mechanism of relay operation, make impact force model and measure characteristic of relay noise. And also we find transfer function of relay noise.

  • PDF

An Analysis of Ice Impact Force Characteristics for the Arctic Structure Shape (극지 구조물 형상에 대한 빙충격 하중 특성 분석)

  • Jeong, Seong-Yeob;Cho, Seong-Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.469-477
    • /
    • 2012
  • This paper describes the characteristic analysis of ice impact force for the Arctic structure shape. In the present study an energy method has been used to predict the impact force during the ice-structure collision. This study also employs two concepts for reference contact area and normalized stress in analysis procedure. The influences of factors, such as impact velocity, full penetration depth, structure shape and ice floe size, are investigated. Full penetration occurs, particularly at lower impact velocity when ice thickness increase. But "typical size" ice floe does not expected ever to achieve full penetration during the impact procedure. The structure shape is the dominant factor in ice impact force characteristic. The results for various ice-structure collision scenarios are analyzed.

A Need of Buffering Function for Full-Off Fitting on Movable Bracket using Conventional Line (기존선 가동브래킷 곡선 당김 금구의 완충기능 필요성)

  • Ahn, Young-Hoon;Kim, Chul-Su;Lee, Seung-Il
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.219-222
    • /
    • 2007
  • The Full-Off Fitting of Movable Bracket using conventional line have received a dynamic contact impact between contact wire and pantograph of electric rolling stock, so this impact cause a rapid vibration of foreword and back near the supporting point of movable bracket. The Full-Off Fitting on Movable Bracket in conventional line differs from that in high speed line. Now conventional line have required a speed up for new electric locomotive and electric car. In speed-up track and big impact place, the Full-Off Fitting and the dropper often get demage. We have done a study of buffering function to solve that problem in conventional line. We have find a need adopting buffer fitting. It is decrease a dynamic impact between contact wire and pantograph of electric rolling stock.

  • PDF

Study on an efficient modeling for the impact analysis of a flexible body employing Hertzian contact theory (Hertz 접촉이론을 이용한 탄성체의 충돌 해석을 위한 효율적 모델링에 관한 연구)

  • Lim, Hong-Seok;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.838-843
    • /
    • 2008
  • Since thickness deformation and lateral deflection often occurs during the collision of flexible bodies, they should be considered simultaneously in the impact analysis. The thickness deformation, however, cannot be considered in beam/shell theory since the thickness is assumed to be constant in the theory. So, solid elements are employed to estimate the thickness deformation. However, the CPU time increases significantly if solid elements are employed. In the present study, a modeling method for the impact analysis of a flexible body employing Hertzian contact theory is presented. The efficiency and the accuracy of the modeling method are discussed with some numerical examples.

  • PDF

Transient Response Analysis of a Comb Type Bridge Expansion Joint due to Travelling Wheel Impact (차륜주행충격에 의한 빗살형 교량 신축이음장치 구조물의 과도진동해석)

  • 최영휴;김현욱;안영덕
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.69-74
    • /
    • 1997
  • In this paper we derive relations which describe the geometry and kinematics of contact between the travelling wheel and stepped comb joint. From which we can obtain the impulse, impulsive force and its time interval due to travelling wheel impact which can not be taken from Carter's model or Newland and Cassidy's. The calculated transient responses of the comb joint structure to travelling wheel impact reveals that the proposed wheel contact model and Carter's give very similar results but Newland Cassidy's model make a quite different results from the others.

  • PDF