• Title/Summary/Keyword: Contact Angle Image

Search Result 60, Processing Time 0.026 seconds

WETTABILITY AND DRUG DELIVERY OF FUNCTIONALLY GRADED NANO-MICRO POROUS TITANIUM SURFACE

  • Yun, Kwi-Dug;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.307-319
    • /
    • 2008
  • STATEMENT OF PROBLEM: It is known that an anodic oxidation technique, one of the methods for the implant surface treatment, remarkably increased surface area, enhanced wettability and accelerated the initial bone healing. Purpose: This study was performed to evaluate the wettability of anodized titanium surface which has a nanotubular structure, to assess osseointegration after the placement of implant with nano-size tubes on tibia of rats and to analyze quantitatively transferable rhBMP-2 on each surface. MATERIAL AND METHOD: Four different kinds of surface-treated titanium discs (polished (machined surface) group, micro (blasting surface) group, nano (anodizedmachined surface) group, and nano-micro (anodized-blasting surface) group) were fabricated (n=10). Three different media were chosen to measure the surface contact angles; distilled water, plasma and rhBMP-2 solution. After a single drop (0.025 $m{\ell}$) of solution, the picture was taken with the image camera, and contact angle was measured by using image analysis system. For the test of osseointegration, 2 kinds of anodized surface (anodized-machined surface, anodized-blasting surface) implants having 2.0 mm in diameter and 5.0 mm in length inserted into the tibia of Wistar rats. After 3 weeks, tibia were harvested and the specimens were stained with hematoxylin and eosin for histological analysis. To test the possibility of drug delivery, after soaking sample groups in the concentration of 250 ng/$m{\ell}$l of rhBMP-2 for 48 hours, the excess solution of rhBMP-2 were removed. After that, they were lyophilized for 24 hours, and then the rhBMP-2 on the surface of titanium was resolved for 72 hours in PBS. All the extracted solution was analyzed by ELISA. One-way analysis of variance (ANOVA) was performed on the data. RESULTS: The wettability is improved by anodic oxidation. The best wettability was shown on the nano-micro group, and it was followed by nano group, micro group, and polished group. In the histological findings, all implants showed good healing and the new bone formation were observed along the implant surface. After 3 days, nano-micro group delivered the most amount of rhBMP-2, followed by nano group, micro group, and polished group. CONCLUSION: It indicated that anodic oxidation on blasting surface produce functionally graded nano-micro porous structure and enhance hydrophilicity of the surface and osseointegration. The findings suggest that the nano-micro porous structure could be a useful carrier of osteogenic molecules like rhBMP-2.

Development of an Automatic Grafting Robot for Fruit Vegetables using Image Recognition (영상인식 기술 이용 과채류 접목로봇 개발)

  • Kang, Dong Hyeon;Lee, Si Young;Kim, Jong Koo;Park, Min Jung;Son, Jin Kwan;Yun, Sung-Wook
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.322-327
    • /
    • 2019
  • This study was conducted to improve the performance of automatic grafting robot using image recognition technique. The stem diameters of tomatoes and cucumber at the time of grafting were $2.5{\pm}0.3mm$ and $2.2{\pm}0.2mm$ for scions and $3.1{\pm}0.7mm$ and $3.6{\pm}0.3mm$ for rootstocks, respectively. The grafting failure was occurred when the different height between scions and rootstocks were over 4 mm and below 2 mm due to the small contact area of both cutting surface. Therefore, it was found that the height difference at the cutting surface of 3 mm is appropriate. This study also found that grafting failure was occurred when the stem diameters of both scions and rootstocks were thin. Therefore, it was suggested to use at least one stem with thicker than the average stem diameter. Field survey on the cutting angle of stems by hand were ranged from 13 to 55 degree for scions and 15 to 67 degree for rootstocks, respectively, which indicates that this could cause the grafting failure problem. However, the automatic grafting robot developed in this study rotates the seedlings 90 degree and then the stems are cut using a cutting blade. The control part of robot use all images taken from grafting process to determine the distance between a center of both ends of stem and a gripper center and then control the rotation angle of a gripper. Overall, this study found that The performance of automatic grafting robot using image recognition technique was superior with the grafting success rates of cucumber and tomato as $96{\pm}3.2%$ and $95{\pm}4%$, respectively.

Multi-layered Coating Deposited on PEMFC (Proton Exchange Membrane Fuel Cell) Bipolar Plates (고분자전해질 연료전지용 바이폴라 플레이트의 다층 코팅의 증착)

  • Yun, Young-Hoon;Chung, Hoon-Taek;Cha, In-Su;Choi, Jeong-Sik;Kim, Dong-Mook;Jung, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.472-476
    • /
    • 2008
  • The surface region of commercial stainless steel 304 and 316 plates has been modified through deposition of the multi-layered coatings composed of titanium film ($0.1{\mu}m$) and gold film ($1-2{\mu}m$) by an electron beam evaporation method. XRD patterns of the stainless steel plates deposited with conductive metal films showed the peaks of the external gold film and the stainless steel substrate. Surface microstructural morphologies of the stainless steel bipolar plates modified with multi-layered coatings were observed by AFM and FE-SEM images. The stainless steel plates modified with $0.1{\mu}m$ titanium film and $1{\mu}m$ gold film showed microstructure of grains of under 100 nm diameter. The external surface of the stainless steel plates deposited with $0.1{\mu}m$ titanium film and $2{\mu}m$ gold film represented somewhat grain growth of Au grains in FE-SEM image. The electrical resistance and water contact angle of the stainless steel bipolar plates modified with multi-layered coatings were examined with the thickness of the gold film.

Surface Properties of the Dried Coacervate Film Affect Dry Feel of the Shampoo Composed of Cationic Polymer and Anionic/Amphoteric Surfactant (양이온 폴리머와 음이온/양쪽성 계면활성제로 형성된 코아세르베이트 건조 필름 특성이 샴푸 건조 후 사용감에 미치는 영향)

  • Son, Seong-Kil;Jeon, Hyun-Wook;Lee, In-Ho;Chang, Sug-Youn
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.2
    • /
    • pp.133-138
    • /
    • 2012
  • The purpose of this study was to examine the correlation between physical properties of dried coacervate films and dry feel for shampoo composition. Simple shampoo compositions were made of two different cationic charge density polymers in the same surfactant compositions. The simple shampoo compositions were diluted with distilled water to make coacervate. Formed coacervate was collected by centrifuge (3,000 rpm, 30 min). Coacervate was coated on the glass plates and dried in drying oven (for 1 h, $50^{\circ}C$) to make the thin film. We carried out an experiment on measurement of contact angle, moisture loss ratio and SEM image analysis of the dried coacervate film. Dry feelings of the shampoos were evaluated by panel using hair tresses. Results show that the properties of dried coacervate films affect the dry feel of the after shampooing.

Preparation and Characterization of Biodegradable Poly($\varepsilon$-caprolactone)/ Poly(ethylene oxide) Microcapsules Containing Erythromycin (에리트로마이신을 함유한 생분해성 폴리카프로락톤/폴리(에틸렌 옥사이드) 마이크로캡슐의 제조 및 특성)

  • 박수진;김승학;이재락;이해방;홍성권
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.449-457
    • /
    • 2003
  • The purposes of this work were the producing of a biodegradable poly($\varepsilon$-caprolactone) (PCL) / poly(ethylene oxide) (PEO) microcapsule and the analyzing of form and features for the manufacturing conditions which could be observed in a prospective drug delivery systems through drug release. The effects of emulsifier, emulsifier concentration, and stirring rate for the diameter and form of the microcapsules were observed using image analyzer and scanning electron microscope. The role of interfacial adhesion between PCL/PEO and drug was determined by contact angle measurements, and the drug release test of the microcapsules was characterized by UV/vis. spectra. As a result, the microcapsules were made in spherical fonns with a mean particle size of 170 nm∼68 $\mu$m. And the work of adhesion between water and PCL/PEO increased with increasing the content of PEO, probably due to the increased the hydrophilicity. It was also found that the drug release rate from the microcapsules significantly increased with increasing the content of PEO, which could be also attributed to the increasing of the hydrophilic groups or the degree of adhesion force at interfaces.

Development of Ceramic Hollow Fiber Membrane Contactor Modules for Carbon Dioxide Separation (이산화탄소 분리용 세라믹 중공사 접촉막 모듈 기술 개발)

  • Lee, Hong Joo;Che, Jin Woong;Park, Jung Hoon
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.249-256
    • /
    • 2016
  • Porous $Al_2O_3$ hollow fiber membranes were successfully prepared by dry-wet spinning/sintering method. The SEM image shows that the $Al_2O_3$ hollow fiber membrane consists mostly of sponge pore structure. The contact angle and the breakthrough pressure were $126^{\circ}$ and 1.91 bar, respectively. This results indicate that the $Al_2O_3$ hollow fiber membranes were successfully modified to hydrophobic surface. The hydrophobic modified $Al_2O_3$ hollow fiber membranes were assembled into a membrane contactor system to separate $CO_2$ from a model gas mixture of the flue gas at elevated gas velocity. The $CO_2$ absorption flux was enhanced when the gas velocity increased from $1{\times}10^{-3}$ to $6{\times}10^{-3}$ m/s. Whereas the $CO_2$ absorption flux was decreased with the number of hollow fiber membrane of a module because of the concentration polarization. Furthermore, we developed an lab-scale $Al_2O_3$ hollow fiber membrane contactor modules and their system (i.e., $CO_2$ absorption using the $Al_2O_3$ membrane and monoethanolamine (MEA)) that could dispose of over $0.02Nm^3/h$ mixture gas (15% $CO_2$) with the removal efficiency higher than 95%. The results can be useful in a field of the membrane contactor for $CO_2$ separation, helping to design and extend a equipment.

Analysis of Bonding Characteristics of Ag-System Brazing Filler Metal (은계 필러메탈 브레이징 접합부의 특성 분석)

  • Soon-Gil Lee;Hwa-In Lee;Jin-Oh Son;Gwang-Il Ha;Bon-Heun Koo
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.214-221
    • /
    • 2023
  • As a filler metal for lowering the melting point of Ag, many alloy metal candidates have emerged, such as cadmium, with zinc, manganese, nickel, and titanium as active metals. However, since cadmium is known to be harmful to the human body, Cd-free filler metals are now mainly used. Still, no study has been conducted comparing the characteristics of joints prepared with and without cadmium. In addition, studies have yet to be conducted comparing the typical characteristics of brazing filler metals with special structures, and the joint characteristics of brazing filler metals with available frames. In this study, the characteristics of junctions of silver-based intercalation metals were compared based on the type of filler metal additives, using a special structure, a filler metal sandwich structure, to protect the internal base metal. The general filler metal was compared using the structure, and the thickness of the filler metal according to the thickness was reached. A comparison of the characteristics of the junction was conducted to identify the characteristics of an intersection of silver-based brazing filler metal and the effect on joint strength. Each filler metal's collective tensile strength was measured, and the relationship between joint characteristics and tensile joint strength was explored. The junction was estimated through micro strength measurement, contact angle measurement with the base metal when the filler metal was melted, XRD image observation, composition analysis for each phase through SEM-EDS, and microstructure phase acquisition.

High Speed Direct Bonding of Silicon Wafer Using Atmospheric Pressure Plasma (상압 플라즈마를 이용한 고속 실리콘 웨이퍼 직접접합 공정)

  • Cha, Yong-Won;Park, Sang-Su;Shin, Ho-Jun;Kim, Yong Taek;Lee, Jung Hoon;Suh, Il Woong;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.31-38
    • /
    • 2015
  • In order to achieve a high speed and high quality silicon wafer bonding, the room-temperature direct bonding using atmospheric pressure plasma and sprayed water vapor was developed. Effects of different plasma fabrication parameters, such as flow rate of $N_2$ gas, flow rate of CDA (clear dry air), gap between the plasma head and wafer surface, and plasma applied voltage, on plasma activation were investigated using the measurements of the contact angle. Influences of the annealing temperature and the annealing time on bonding strength were also investigated. The bonding strength of the bonded wafers was measured using a crack opening method. The optimized condition for the highest bonding strength was an annealing temperature of $400^{\circ}C$ and an annealing time of 2 hours. For the plasma activation conditions, the highest bonding strength was achieved at the plasma scan speed of 30 mm/sec and the number of plasma treatment of 4 times. After optimization of the plasma activation conditions and annealing conditions, the direct bonding of the silicon wafers was performed. The infrared transmission image and the cross sectional image of bonded interface indicated that there is no void and defects on the bonded wafers. The bonded wafer exhibited a bonding strength of average $2.3J/m^2$.

Repair of Plasma Damaged Low-k Film in Supercritical Carbon Dioxide (초임계이산화탄소를 이용한 플라즈마 손상된 다공성 저유전 막질의 복원)

  • Jung, Jae-Mok;Lim, Kwon-Taek
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.191-197
    • /
    • 2010
  • Repair reaction of plasma damaged porous methyl doped SiOCH films was carried out with silylation agents dissolved in supercritical carbon dioxide ($scCO_2$) at various reaction time, pressure, and temperature. While a decrease in the characteristic bands at $3150{\sim}3560cm^{-1}$ was detectable, the difference of methyl peaks was not identified apparently in the FT-IR spectra. The surface hydrophobicity was rapidly recovered by the silylation. In order to induce effective repair in bulk phase, the wafer was heat treated before reaction under vacuum or ambient condition. The contact angle was slightly increased after the treatment and completely recovered after the subsequent silylation. Methyl groups were decreased after the plasma damage, but their recovery was not identified apparently from the FT-IR, spectroscopic ellipsometry, and secondary ion mass spectroscopy analyses. Furthermore, Ti evaporator was performed in a vacuum chamber to evaluate the pore sealing effect. The GDS analysis revealed that the open pores in the plasma damaged films were efficiently sealed with the silylation in $scCO_2$.

Ultrasound Imaging of Normal Cardiac Structures with Convex Scanner in Puppies (강아지에서 컨벡스스캐너를 이용한 정상적인 심장구조물의 초음파상)

  • Jeong Soon-wuk;Park Hee-myung;Han Sook-hee;Yoon Jung-hee;Han Hong-ryul
    • Journal of Veterinary Clinics
    • /
    • v.11 no.2
    • /
    • pp.529-537
    • /
    • 1994
  • Sector scanner which has a conical end is used to image through the intercostal space because heart is protected by the ribs. Cardiac data published all around the world were also obtained by sector scanner. Although scanners being used in every small animal practice and animal hospital at college in Korea include convex ape and linear type, linear type is not appropriate f3r cardiac scan because of a wide contact surface. The purpose of this study is to establish ultrasonographic images of normal cardiac structures by measuring shape, size of reflectable cardiac structure according to restraint position in scanning normal heart of the puppies with 6.5 MHz convex scanner(SonoAce 4500, Medison, Korea) used in our veterinary teaching hospital, Seoul national university. Seventeen male and female puppies considered having healthy hear by X-ray and clinical examination are used feom April to July 1994. Scanning point selection of probe head and the distinction of imaged cardiac structures were accomplished by necropsy and cardiac scanning performed through thoracotomy under general anesthesia. At 10 o'clock position of transducer(at an angle of 30$^{\circ}$ between imaginary line from elbow joint to 3rd sternum and probe head, 60$^{\circ}$ from body surface, 4th intercostal space of right thorax) with the marker of scanner toward the head of dogs right atrium, left atrium and left ventricle were observed in 2, 3, 4, 5 intercostal space(2cm from the sternum) of experimental dog positioned ventrodorsally under general anesthesia. Under these conditions, the numerical values of imaged diastolic hear are as follows : the distance from skin to apex(mean$\pm$S.D) 47.53$\pm$6.94mm, thickness of left ventricular wall 6.00$\pm$1.60mm, length of left ventricle 16.27$\pm$5.31mm, width of left ventricle 15,33$\pm$4.25mm, length of left atrium 12.33$\pm$3.82mm, width of left atrium 11. 33$\pm$3.94mm, length of right atrium 1.00$\pm$2.41mm, width of right atrium 11.21$\pm$2.76mm and the area of left ventricle 270.92$\pm$109.81mm$^2$, area of left atrium 98.00$\pm$41.08mm$^2$, area of right atrium 62.75$\pm$21.04mm$^2$.

  • PDF