DOI QR코드

DOI QR Code

Development of an Automatic Grafting Robot for Fruit Vegetables using Image Recognition

영상인식 기술 이용 과채류 접목로봇 개발

  • Kang, Dong Hyeon (Dept. of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Lee, Si Young (Dept. of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Jong Koo (Dept. of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Park, Min Jung (Dept. of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Son, Jin Kwan (Dept. of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Yun, Sung-Wook (Dept. of Agricultural Engineering, National Institute of Agricultural Sciences, RDA)
  • 강동현 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 이시영 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 김종구 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 박민정 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 손진관 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 윤성욱 (농촌진흥청 국립농업과학원 농업공학부)
  • Received : 2019.07.12
  • Accepted : 2019.09.02
  • Published : 2019.10.30

Abstract

This study was conducted to improve the performance of automatic grafting robot using image recognition technique. The stem diameters of tomatoes and cucumber at the time of grafting were $2.5{\pm}0.3mm$ and $2.2{\pm}0.2mm$ for scions and $3.1{\pm}0.7mm$ and $3.6{\pm}0.3mm$ for rootstocks, respectively. The grafting failure was occurred when the different height between scions and rootstocks were over 4 mm and below 2 mm due to the small contact area of both cutting surface. Therefore, it was found that the height difference at the cutting surface of 3 mm is appropriate. This study also found that grafting failure was occurred when the stem diameters of both scions and rootstocks were thin. Therefore, it was suggested to use at least one stem with thicker than the average stem diameter. Field survey on the cutting angle of stems by hand were ranged from 13 to 55 degree for scions and 15 to 67 degree for rootstocks, respectively, which indicates that this could cause the grafting failure problem. However, the automatic grafting robot developed in this study rotates the seedlings 90 degree and then the stems are cut using a cutting blade. The control part of robot use all images taken from grafting process to determine the distance between a center of both ends of stem and a gripper center and then control the rotation angle of a gripper. Overall, this study found that The performance of automatic grafting robot using image recognition technique was superior with the grafting success rates of cucumber and tomato as $96{\pm}3.2%$ and $95{\pm}4%$, respectively.

접목시기의 줄기직경을 조사한 결과 토마토 접수는 $2.5{\pm}0.3mm$, 대목은 $3.1{\pm}0.7mm$인 것으로 조사되었고, 오이 접수는 $2.2{\pm}0.2mm$, 대목은 약 $3.6{\pm}0.3mm$인 것으로 조사되었다. 절단 기준점의 높이 차는 4mm 이상일 때 대부분의 모종에 대해 접촉면이 작아 접목 불량이 발생하였고, 2mm 이하일 때 접수와 대목의 절단면 겹침으로 인하여 접촉부가 작아 불량이 발생하는 것으로 분석되어 3mm가 적당한 것으로 사료된다. 접수 및 대목 줄기직경이 모두 얇을 경우 접수 및 대목 중 하나의 줄기직경이 평균값 이상을 이용해야 하는 것으로 분석되었다. 또한 줄기의 절단 각도는 인력으로 작업하기 때문에 접수는 $13{\sim}55^{\circ}$, 대목은 $15{\sim}67^{\circ}$의 범위로 다양한 것으로 조사되어 접목 불량의 원인이 될 수 있으므로 기계절단을 통하여 접수와 대목의 절단각도를 일치시킴으로써 접목성공률을 향상 시킬 필요가 있을 것으로 사료된다. 모종 줄기 절단면 촬영 및 영상처리로 모종의 휨을 인식 및 계산하여 그립퍼의 회전각을 제어하여 정확도 시험을 실시한 결과 접수와 대목 절단면은 정확히 접합되는 것으로 조사되었다. 영상 인식 기술을 적용한 접목로봇을 이용하여 오이와 토마토에 대한 접목시험을 실시한 결과 오이는 $96{\pm}3.2%$, 토마토는 $95{\pm}4%$의 접목 성공률이 조사되었다.

Keywords

References

  1. Kang, C.H., S.K. Lee, K.S. Han, and H.K. Choi. 2005. Development of a root-removed splice grafting system for cucurbitaceous vegetables - operating performance of grafting system-. Proceeding of the KSAM 2005 Summer Conference 10:343-346.(in Korean)
  2. Kang, C.H., S.K. Lee, K.S. Han, Y.B. Lee, and H.K. Choi. 2008. Development of a root-removed splice grafting system for cucurbitaceous vegetables(1) - Analysis of grafting process and system setting-. J. of Biosystems Eng. 33:453-461.(in Korean) https://doi.org/10.5307/JBE.2008.33.6.453
  3. Kang, D.H., S.Y. Lee, J.K. Kim, M.J. Park, J.K. Son, S.W. Yun, S.W. An, and I.K. Jung. 2017, A study on performance improvement of fruit vegetables automatic grafting system. Protected Hort. Plant Fac. 26:215-220.(in Korean) https://doi.org/10.12791/KSBEC.2017.26.3.215
  4. Kim, H.M., and S.J. Hwang. 2015. Comparison of pepper grafting efficiency by grafting robot. Protected Hort. Plant Fac. 24:57-62.(in Korean) https://doi.org/10.12791/KSBEC.2015.24.2.057
  5. Kobayashi, K. and M. Suzuki. 1996. Development of grafting robot for cucurbitaceous vegetables(Part 3) -Continuous grafting by experimental model-. Journal of the Japanese Society of Agricultural Machinery 58:83-93.(in Japanese)
  6. National Institute of Horticultural and Herbal Science( NIHHS). 2013. Current status of grafted fruit vegetable transplants production and cultivation. Rural Development Administration. (in Korean)
  7. Nishiura, Y. 2011. Automation of grafted seedlings production and a prospective view of a year-round plant production system. Journal of Society of High Technology in Agriculture 23:87-92.(in Japanese) https://doi.org/10.2525/shita.23.87
  8. Park, K.S., K.M. Lee, and J.Y. Kim. 1997. Mechanism of a grafting machine using the insertion method, Agric. Res. Bull. Kyungpook Natl. Univ. 15:115-122.(in Korean)
  9. Suzuki, M., K. Kobayashi, K. Inooku, K. Miura, and K. Hirata. 1995a. Development of grafting robot for cucurbitaceous vegetables(Part 1). Journal of the Japanese Society of Agricultural Machinery 57:100-108.(in Japanese)
  10. Suzuki, M., K. Kobayashi, K. Inooku, and K. Miura. 1995b. Development of grafting robot for cucurbitaceous vegetables( Part 2). Journal of the Japanese Society of Agricultural Machinery 57:103-110.(in Japanese)