• 제목/요약/키워드: Consumption prediction

검색결과 441건 처리시간 0.025초

IoT 센서 데이터를 이용한 단위실의 재실추정을 위한 Decision Tree 알고리즘 성능분석 (A Study on Occupancy Estimation Method of a Private Room Using IoT Sensor Data Based Decision Tree Algorithm)

  • 김석호;서동현
    • 한국태양에너지학회 논문집
    • /
    • 제37권2호
    • /
    • pp.23-33
    • /
    • 2017
  • Accurate prediction of stochastic behavior of occupants is a well known problem for improving prediction performance of building energy use. Many researchers have been tried various sensors that have information on the status of occupant such as $CO_2$ sensor, infrared motion detector, RFID etc. to predict occupants, while others have been developed some algorithm to find occupancy probability with those sensors or some indirect monitoring data such as energy consumption in spaces. In this research, various sensor data and energy consumption data are utilized for decision tree algorithms (C4.5 & CART) for estimation of sub-hourly occupancy status. Although the experiment is limited by space (private room) and period (cooling season), the prediction result shows good agreement of above 95% accuracy when energy consumption data are used instead of measured $CO_2$ value. This result indicates potential of IoT data for awareness of indoor environmental status.

인공신경망 변수에 따른 HVAC 에너지 소비량 예측 정확도 평가 - 송풍기를 중심으로- (An Analysis of the Prediction Accuracy of HVAC Fan Energy Consumption According to Artificial Neural Network Variables)

  • 김지헌;성남철;최원창;최기봉
    • 대한건축학회논문집:구조계
    • /
    • 제34권11호
    • /
    • pp.73-79
    • /
    • 2018
  • In this study, for the prediction of energy consumption in the ventilator, one of the components of the air conditioning system, the predicted results were analyzed and accurate by the change in the number of neurons and inputs. The input variables of the prediction model for the energy volume of the fan were the supply air flow rate, the exhaust air flow rate, and the output value was the energy consumption of the fan. A predictive model has been developed to study with the Levenbarg-Marquardt algorithm through 8760 sets of one-minute resolution. Comparison of actual energy use and forecast results showed a margin of error of less than 1% in all cases and utilization time of less than 3% with very high predictability. MBE was distributed with a learning period of 1.7% to 2.95% and a service period of 2.26% to 4.48% respectively, and the distribution rate of ${\pm}10%$ indicated by ASHRAE Guidelines 14 was high.8.

Implementation of low power algorithm for near distance wireless communication and RFID/USN systems

  • Kim, Song-Ju;Hwang, Moon-Soo;Kim, Young-Min
    • International Journal of Contents
    • /
    • 제7권1호
    • /
    • pp.1-7
    • /
    • 2011
  • A new power control algorithm for wireless communication which can be applied to various near distance communications and USN/RFID systems is proposed. This technique has been applied and tested to lithium coin battery operated UHF/microwave transceiver systems to show extremely long communication life time without battery exchange. The power control algorithm is based on the dynamic prediction method of arrival time for incoming packet at the receiver. We obtain 16mA current consumption in the TX module and 20mA current consumption in the RX module. The advantage provided by this method compared to others is that both master transceiver and slave transceiver can be low power consumption system.

Fuel Consumption Prediction and Life Cycle History Management System Using Historical Data of Agricultural Machinery

  • Jung Seung Lee;Soo Kyung Kim
    • Journal of Information Technology Applications and Management
    • /
    • 제29권5호
    • /
    • pp.27-37
    • /
    • 2022
  • This study intends to link agricultural machine history data with related organizations or collect them through IoT sensors, receive input from agricultural machine users and managers, and analyze them through AI algorithms. Through this, the goal is to track and manage the history data throughout all stages of production, purchase, operation, and disposal of agricultural machinery. First, LSTM (Long Short-Term Memory) is used to estimate oil consumption and recommend maintenance from historical data of agricultural machines such as tractors and combines, and C-LSTM (Convolution Long Short-Term Memory) is used to diagnose and determine failures. Memory) to build a deep learning algorithm. Second, in order to collect historical data of agricultural machinery, IoT sensors including GPS module, gyro sensor, acceleration sensor, and temperature and humidity sensor are attached to agricultural machinery to automatically collect data. Third, event-type data such as agricultural machine production, purchase, and disposal are automatically collected from related organizations to design an interface that can integrate the entire life cycle history data and collect data through this.

산업단지 에너지 효율화를 위한 에너지 수요/공급 예측 및 시뮬레이터 UI 설계 (Energy Demand/Supply Prediction and Simulator UI Design for Energy Efficiency in the Industrial Complex)

  • 이형아;박종혁;조우진;김동주;구재회
    • 문화기술의 융합
    • /
    • 제10권4호
    • /
    • pp.693-700
    • /
    • 2024
  • 에너지 소비 문제가 전 세계적으로 주요한 이슈로 자리잡아 다양한 부문에서 에너지 소비 및 온실가스 배출 절감에 대한 관심이 크다. 2022년 3월 말 기준 국내 산업단지 총 면적은 606 km2로, 전체 국토면적의 약 0.6 %에 불과한다. 하지만 2018년 기준, 국내 산업단지의 연간 에너지 사용량은 국가 전체 에너지 사용량의 53.5 %, 전체 산업부문 에너지 사용량의 83.1 %를 차지하는 110,866.1천 TOE임으로 확인되었다. 더불어 국가 전체 온실가스 배출량의 45.1 %, 산업부문 온실가스 배출량의 76.8 %를 차지하여 환경에 미치고 있는 영향 또한 상당한 상황임이 확인하였다. 이러한 배경 하에 본 연구에서는 산업단지 차원의 에너지 효율화에 기여하고자, 국내 한 산업단지를 대상으로 에너지 수요 및 공급의 예측을 진행하였으며, 예측 결과값을 포함하여 에너지 모니터링을 위한 시뮬레이터 UI 화면을 설계하였다. 머신러닝 알고리즘 중 다층퍼셉트론 (Multi-Layer Perceptron; MLP)을 사용하였으며, 예측 모델의 최적화 기법으로서 베이지안 최적화 (Bayesian Optimization)를 적용하였다. 본 연구에서 구축한 예측 모델은 산업단지 내 압축공기 수요 유량의 경우는 87.90 %, 공용 공기압축기 공급 가능 유량의 경우는 99.54 %의 예측 정확도를 보였다.

Enhanced Markov-Difference Based Power Consumption Prediction for Smart Grids

  • Le, Yiwen;He, Jinghan
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1053-1063
    • /
    • 2017
  • Power prediction is critical to improve power efficiency in Smart Grids. Markov chain provides a useful tool for power prediction. With careful investigation of practical power datasets, we find an interesting phenomenon that the stochastic property of practical power datasets does not follow the Markov features. This mismatch affects the prediction accuracy if directly using Markov prediction methods. In this paper, we innovatively propose a spatial transform based data processing to alleviate this inconsistency. Furthermore, we propose an enhanced power prediction method, named by Spatial Mapping Markov-Difference (SMMD), to guarantee the prediction accuracy. In particular, SMMD adopts a second prediction adjustment based on the differential data to reduce the stochastic error. Experimental results validate that the proposed SMMD achieves an improvement in terms of the prediction accuracy with respect to state-of-the-art solutions.

우리나라 쇠고기 소비 행태 변화에 의한 이산화탄소 배출 변화량 예측 (Prediction of the Carbon Dioxide Emission Change Resulting from the Changes in Bovine Meat Consumption Behavior in Korea)

  • 여민주;김용표
    • 한국대기환경학회지
    • /
    • 제31권4호
    • /
    • pp.356-367
    • /
    • 2015
  • A consumption based study on the carbon dioxide ($CO_2$) emission change due to the changes in the bovine meat consumption behavior in Korea was carried out. It was found that if the consumption of bovine meat be reduced by half, the reduction amount of $CO_2$ emissions be over 0.8 $MtCO_2e$ in all senarios in 2023. This amount is equivalent to over 50% of the greenhouse gases (GHGs) emission reduction target in agriculture and forestry, and fishery, a significant reduction. It was also found that the $CO_2$ emission reduction amount in consumption-based approach was the largest when the consumption of the imported bovine meat be reduced, though the difference was not that large.

가솔린 차량의 각 요소별 연료소모량 예측 (Prediction of Vehicle Fuel Consumption on a Component Basis)

  • 송해박;유정철;이종화;박경석
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.203-210
    • /
    • 2003
  • A simulation study was carried to analyze the vehicle fuel consumption on component basis. Experiments was also carried out to identify the simulation results, under FTP-75 Hot Phase driving conditions. and arbitrary driving conditions. A good quantitative agreement was obtained. Based on the simulation, fuel energy was used in pumping loss(3.7%), electric power generation(0.7%), engine friction(12.7%), engine inertia(0.7%), torque converter loss(4.6%), drivetrain friction(0.6%), road-load(9.2%), and vehicle inertia(13.4%) under FTP-75 Hot Phase driving conditions. Using simulation program, the effects of capacity factor and idle speed on fuel consumption were estimated. A increment of capacity factor of torque converter resulted in fuel consumption improvement under FTP-75 Hot Phase driving conditions. Effect of a decrement of idle speed on fuel consumption was negligible under the identical driving conditions.

회귀분석을 통한 창원시 중학교 전력소비량 예측에 관한 연구 (A Study on Prediction of Power Consumption Rate of Middle School Building in Changwon City by Regression Analysis)

  • 조형규;박효석;최정민;조성우
    • 교육녹색환경연구
    • /
    • 제12권2호
    • /
    • pp.61-70
    • /
    • 2013
  • As the existing school building power consumption is expressed by total power consumption, in the view of energy saving is disadvantage. The the power consumption of school building is divided as cooling, heating, lighting and others. The cooling power consumption, heating power consumption, lighting power consumption can be calculated using real total power consumption that gained from Korea Electric Power Corporation(KEPCO). The power consumption for cooling and heating can be calculated using heat transmittance, wall area and floor area, and for lighting is calculated by artificial lighting calculation. but this calculation methods is difficult for laymen. This study was carried out in order to establish the regression equation for cooling power consumption, heating power consumption, lighting power consumption and other power consumption in school building. In order to verify the validity of the regression equation, it is compared regression equation results and calculation results based on real power consumption. As the results, difference between regression result and calculation results for cooling and heating power consumption showed 0.6% and 3.6%.