• Title/Summary/Keyword: Construction factory

Search Result 376, Processing Time 0.025 seconds

The Optimum Binder Ratio for High-Strength Self-Leveling Material (고강도 Self-Leveling재의 최적 결합재비)

  • Kim, Jin-Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.89-98
    • /
    • 2002
  • Self-leveling material(SLM) is one of the floor finishing materials which make flat surface like as water level by itself in a short time. So it is possible to increase construction speed and enhance economical efficiency In this study, author intended to develop SLM for the industrial warehouse and factory loading heavy weight machinery and vehicles. The demanded properties for this type of SLM are above 200mm of flow value and above 300kgf/$cm^2$ of 28-days compressive strength. To possess demended strength and fluidity, SLM have to be composed of many types of binders and chemical additives. So it is difficult to decide suitable mixing proportion of composition materials. In this study, author investigated the weight percentage effect of main composition materials for high-strength self-leveling material, by experimental design such as tables of orthogonal arrays and simplex design, and by statistical analysis such as analysis of variance and analysis of response surface. Variables of experiments were ordinary Portland cement(OPC), alumina cement(AC), anhydrous gypsum(AG), lime stone(LS) and sand, and properties of tests were fluidity of fresh state and strength of hardened state. Results of this study are showed that suitable mix proportions of binders for the high strength self-leveling materials are two groups. One is 78~85.5% OPC, 7.5~9.5% AC, 9~12.5% AG and the other is 72.5~78% OPC, 9~12.5% AC, 13~15% AG.

An Experimental Study for the Evaluation of the Structural Behavior Eco Deck Plate (Eco Deck Plate의 구조적 거동 평가를 위한 실험적 연구)

  • Lee, Jin-Eung;Lee, Yong-Jae;Lee, Soo-Kueon;Jung, Byung-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.40-48
    • /
    • 2013
  • Eco deck plate system is a construction method that deconstruction of galvanized steel sheets is possible by integrating steel-wire-integrated girders and the galvanized steel sheets with bolts. Therefore, compared with previous steel-wire-integrated deck plates which were joined by welding, the system is acknowledged as the construction method possible management and repair. This study conducted an experimental research by manufacturing total 24 full size specimens in a same condition for 12-shape specimens by two parts to evaluate structural behaviors of the eco deck plates. In the results after the test, permissible deflection for the construction load action was shown to be values under design values and satisfactory. The processing of lattice steel wires was presented to be structurally advantageous in being manufactured by cutting downward. Also, in case of a specimen that D13 as a steel wire was used, destruction occurred at the welding part of the bottom steel wire and the lattice steel wire, so improvement measures for the welding in factory manufacture are necessary.

Effects of Multi-stepwise TPSM on Improving the Behavior of H-beam bridge (H형강 교량의 성능개선을 위한 다단계 온도프리스트레싱 효과 분석)

  • Ahn, Jin Hee;Kim, Jun Hwan;Jung, Chi Young;Kim, Sang Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.527-537
    • /
    • 2007
  • The main girders and cross-beams of an H-beam bridge consisted of factory-made H-beams, providing better conditions for quality control. Also, on-site fabrication works can be minimized and most of the stiffeners can be omitted, enabling simple and economic construction. In this study, the effect of the Multi-Stepwise TPSM (M-TPSM) on improving the maximum span length and section efficiency is analyzed. Compared to a 30-m-long, five-girder conventional plate girder bridge, structural analysis results showed that 50.7~55.1% of the girder height and 24.1~26.2% of the self-weight may be reduced by the application of M-TPSM to a five-girder H-beam bridge constructed with H-$900{\times}300$beams. In case of conventional H-beam bridges without M-TPSM, it was found that seven girders are required for a similar level of load-carrying capacity. Therefore, it is concluded that by the application of the M-TPSM, the H-beam bridge would become one of most cost-competitive options for short- and medium-span bridges.

Long-term monitoring of a hybrid SFRC slab on grade using recycled tyre steel fibres

  • Baricevic, Ana;Grubor, Martina;Paar, Rinaldo;Papastergiou, Panos;Pilakoutas, Kypros;Guadagnini, Maurizio
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.547-557
    • /
    • 2020
  • This paper presents one of the demonstration projects undertaken during the FP7 EU-funded Anagennisi project (Innovative reuse of all tyre components in concrete-2014-2017) on a full-scale (30 m×40 m, thickness: 0.2 m) Steel Fibre Reinforced Concrete (SFRC) slab-on-grade using a blend of manufactured steel fibres (MSF) and Recycled Tyre Steel Fibres (RTSF). The aim of the project was to assess the use of RTSF in everyday construction practice. The Anagennisi partners, Dulex Ltd in collaboration with Gradmont-Gradacac Ltd and University of Zagreb, designed, cast and monitored the long-term shrinkage deformations of the indoor slab-on-grade slab at Gradmont's precast concrete factory in Gradacac, Bosnia and Herzegovina. A hybrid RTSF mix (20 kg/㎥ of MSF+10 kg/㎥ of RTSF) was used to comply with the design criteria which included a maximum load capacity of 20 kN/㎡. The slab was monitored for one year using surveying equipment and visual inspection of cracks. During the monitoring period, the slab exhibited reasonable deformations (a maximum displacement of 3.3 mm for both, horizontal and vertical displacements) whilst after five years in use, the owners did not report any issues and were satisfied with the construction methodology and materials used. This work confirms that RSTF is a viable and sustainable solution for slab-on-grade applications.

Analysis of Bar in Coil's Application to Rebar Work (철근공사의 코일철근(Bar in Coil) 적용타당성 분석)

  • Lee, Hyun-Soo;Kim, Jae-Gon;Park, Moon-Seo;Kim, Hyun-Soo;Hwang, Sung-Joo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.1
    • /
    • pp.106-117
    • /
    • 2012
  • The proportion of rebar factory manufacturing which has been settled down in Korea recently seems to increase because of their strength such as high decreasing rate of rebar loss and manufacturing accuracy and the external factors such as an increase of downtown projects and a decrease of skilled workers. However, factory manufacturing using straight rebars causes a certain amount of rebar loss and an environmental problem including $CO_2$ emissions. To solve these problems, Bar in coil (BIC) has been introduced; however its application is very rare because it has not been produced so far in Korea and manufacturing machines of BIC are very expensive. Also, although BIC's application is expected to expand due to its strengths, few analysis of its application has been conducted. Therefore in this study, analysis of the BIC's characteristics and the influence to the rebar manufacturing industry are conducted for the advancement of rebar work as a basic research. To achieve this, inquiry on the present condition of rebar manufacturing industry in Korea is implemented. Then, the validation of BIC's applications by aspects of industry and the analysis of stakeholders' economical profit and loss are conducted.

Manufacturing Characteristics of Boards Recycling Waste Wood Particle (폐목재파티클을 이용한 재생보드의 제조특성)

  • Kim, Wae-Jung;Suh, Jin-Suk;Han, Tae-Hyung;Park, Jong-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.120-127
    • /
    • 2006
  • The hammer-milled characteristics of waste wood materials such as lumber, plywood, particleboard(PB), MDF and railroad tic were investigated in this study. The physical and mechanical properties of recycled boards according to types of recycled particle and the mixing ratios were also studied. The hammer-milled, waste wood materials had the dimensional distributions suitable for the core layer panicle. Bending strengths of recycled boards (one layer) were shown in order of plywood, PB(laboratory-fabricated with particles used in the PB factory), lumber, tego film-overlaid plywood, MDF, waste railroad tie, PB(factory-made) and LPL-overlaid PB. Cured resin and creosote containing waste wood contributed to dimensional stability of reconstituted boards. Considering the mixing effects between lumber and plywood with recycled PB particle, lumber particle was contributive to bending strength, MOE and internal bond(IB) strength, whereas plywood particle was contributive to dimensional stability. The bending and IB strength of 3 layer boards composing only recycled waste wood particles in core layer of board were in order of lumber, plywood, PB and MDF. On the other hand, the thickness swelling was in order of PB, lumber, plywood and MDF. Bending strength of the 3 layer boards mixed with recycled PB-particle in the core layer had a decreasing tendency, as the mixing ratios of recycled PB-particles increased. The dimensional stability of 3 layer recycled board was improved as the mixing ratio of recycled PB-particle increased same as in one layer. Formaldehyde emission of boards fabricated with recycled PB-particles in the core layer of the PB was in the range of E2 grade (below 5.0mg/l).

  • PDF

Development of Risk Evaluation Checklist for In-Situ Production of Precast Concrete Members (기성콘크리트 부재의 현장생산 리스크 평가를 위한 체크리스트 개발)

  • Lim, Jeeyoung;Jeong, Hee Woong;Kim, Dae Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.445-457
    • /
    • 2021
  • In previous studies, it was confirmed that through the in-situ production of precast concrete members, costs could be reduced by 14.5-39.4% compared to in-plant production. In particular, it was confirmed that the factory owner did not make a contract if it did not earn more than 20% of the production cost. If precast concrete members are produced in-situ under the same conditions, the quality equivalent to that of factory production can be secured. As it is advantageous in terms of cost and quality, precast concrete members must be produced in-situ. However, it is difficult to produce all quantities in-situ due to time and various other constraints. This is because in-situ production is avoided due to anticipated risks during the project management process. However, if the risk factors are analyzed before performing in-situ production of precast concrete members, it will increase the opportunity for in-situ production. Therefore, this study develops a checklist for evaluating the risk of in-situ production of precast concrete members. By applying the checklist to one case site, it was verified that risk factors can be evaluated easily and quickly. As a result, it was analyzed that sites with a high building coverage ratio are classified as high-risk sites because it is difficult to secure usable area for production and storage. The developed checklist efficiently evaluates the risk factors of in-site production, and makes it possible for the operator to determine the risk factors, which can change frequently during project execution, and respond according to the situation.

Inventory Management in Construction Operations Involving on-site Fabrication of Raw Materials (원자재 조립.가공과정을 갖는 건설공사 프로세스의 적정 재고관리 방안에 관한 연구)

  • Im, Keon-Soon;Han, Seung-Heon;Jung, Do-Young;Ryu, Chung-Kyu;Choi, Seok-Jin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.1
    • /
    • pp.187-198
    • /
    • 2008
  • There are usually plenty of material inventories in a construction site. More inventories can meet unexpected demands, and also they may have an economical advantage by avoiding a probable escalation of raw material costs. On the other hand, these inventories also cause negative aspects to increase costs for storing redundant inventory as well as decreasing construction productivity. Therefore, a proper method of deciding an optimal level of material inventories while considering dynamic variations of resources under uncertainty is very crucial for the economical efficiency of construction projects. This research presents a stochastic modelling method for construction operations, particularly targeting a work process involving on-site fabrication of raw materials like iron-rebar process (delivery, cut and assembly, and placement). To develop the model, we apply the concept of factory physics to depict the overall components of a system. Then, an optimal inventory management model is devised to support purchase decisions where users can make timely actions on how much to order and when to buy raw materials. Also, optimal time lag, which minimizes the storage time for pre-assembled materials, is obtained. To verify this method, a real case is applied to elicit an optimal amount of inventory and time lag. It is found that average values as well as variability of inventory level decreased significantly so as to minimize economic costs related to inventory management under uncertain project condition.

A Proposal for Optimizing Unit Modular System Process to Improve Efficiency in Off-site Manufacture, Transportation and On-site Installation (유닛 모듈러 공법의 효율성 확보를 위한 공장제작, 운반, 현장설치의 최적 공정 제안)

  • Lee, Kwang-Bok;Kim, Kyung-Rai;Shin, Dong-Woo;Cha, Hee-Sung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.14-21
    • /
    • 2011
  • A unit modular system is a construction method which installs on site by manufacturing 50%~90% of the whole process in the factory. This method can minimize the process in the site and maximize the operation, which will reduce the duration and improve the overall quality. The recent paradigm of construction is to be sustainable building. Modular system can be regarded as a sustainable building construction method because it can reduce the amount of construction waste by recycling partial or whole part of overdue building be torn down. A unit modular system is the answer to cope with the increasing market of small size housings. A unit modular system is the most appropriate option at this point. This research proposes the standard operation and construction process of modular system, which enable to optimal system. A case study of reconstructing small-size housing was introduced to support this proposal. Finished unit modular is the reasonable way. However, 80% of complication rate of the modular is the most rational when a defect occurrence during delivery is considered.

Experimental Evaluation of the Flexural Behavior of SY Permanent Steel Form for RC Beam and Girder (SY 비탈형 보 거푸집의 휨 거동에 대한 실험적 고찰)

  • Bae, Kyu-Woong;Boo, Yoon-Seob;Shin, Sang-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.11-21
    • /
    • 2022
  • Currently, in the domestic construction industry, the free web method has been emerging as a potential solution to the shortage of skilled workers due to the prolonged COVID-19 crisis, as it helps in securing economic feasibility through shortening the construction period and reducing labor costs. To consider one part of the construction method, in this study, the bending behavior according to the load was evaluated for the SY slope-type beam formwork, which was manufactured at a factory, assembled with rebar, brought into the site, and then poured into the site. For the SY Beam standard cross-sectional shape, a cross-sectional dimensional width of 400mm and depth 600mm determined through structural modeling using the MIDAS GEN program were applied. A total of 6 specimens were made with a member length of 5,000mm, 5 specimens and one RC specimen in the comparison group were manufactured in real-size format using the thickness of the steel plate(0.8, 1.0, 1.2mm) as a variable, and bending experiments were performed. In the bending test, the steel plate deck showed high initial stiffness and maximum strength as it yielded, which showed that it sufficiently contributed to the flexural strength. It is judged that additional analysis and experimental studies for 1.05, 1.1, and 1.15mm are needed to derive the appropriate steel plate thickness and the method for calculating the tensile force contribution of the steel plate to secure the manufacturing, construction and economic feasibility of SY Beam in the future.