• Title/Summary/Keyword: Construction defect

Search Result 408, Processing Time 0.02 seconds

Investigation on Water Leakage-Induced Tunnel Structure and Ground Responses Using Coupled Hydro-Mechanical Analysis (수리역학 연계해석을 이용한 누수로 인한 터널 구조물 및 지반 거동의 분석)

  • Dohyun Park
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.265-280
    • /
    • 2023
  • Water leakage in tunnels is a defect that can affect tunnel stability and the ground movement by changing the stress and pore water pressure of the surrounding ground. Long-term or large-scale water leaks may lead to damage of tunnel structure and the surrounding environment, such as tunnel lining instability and ground surface settlement. The present study numerically investigated the effects of water leakage on the structural stability of a tunnel and the ground behavior. The tunnel was assumed to be under undrained conditions for preventing the inflow of the surrounding water and leaks occurred in the concrete lining after completion of the tunnel construction. A coupled hydro-mechanical analysis using a TOUGH-FLAC simulator developed in Python was conducted for assessing the leakage induced-behavior of the tunnel structure and ground under different conditions of the amount and location of water leak. Additionally, the effect of hydro-mechanical coupling terms on the results of coupled response was investigated and discussed.

Development of BIM Based Analytical Model for Laterally Loaded Piles with Defects and Application (BIM 기반의 단면이 손상된 말뚝의 수평 거동 해석 모형 개발과 적용)

  • Jung, Young Wook;Ahn, Jaeyoon;Kim, Hyeonseoung;Ahn, Jaehun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.179-188
    • /
    • 2024
  • Nondestructive pile integrity tests are used to confirm the construction of drilled shafts as the foundation of many facilities. However, the safety of the foundation is determined only by the presence or absence of defects, and the location and scale of defects are not considered. In this study, we propose an analysis model for the lateral bearing capacity and section force connected building information modeling (BIM) by extracting the cross-sectional characteristics of the defect in piles and reviewing the safety of piles with defects. Defects at the top of piles had more effect on the change in the deflection of the pile head. Moreover, the decrease in the axial force-bending moment interaction diagram due to cross-sectional reduction increased the risk of destruction of the piles more than the change in the bending moments due to defects. The proposed method can help review the comprehensive safety of piles.

Comparative study of calcium carbonate deposition induced by microorganisms and plant ureases in fortified peat soils

  • Chao Wang;Jianbin Xie;Yinlei Sun;Jianjun Li;Jie Li;Ronggu Jia
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.3
    • /
    • pp.187-202
    • /
    • 2024
  • For the problems of high compressibility and low strength of peat soil formed by lake-phase deposition in Dianchi Lake, microbial-induced calcium carbonate deposition (MICP), phyto-urease-induced calcium carbonate deposition (EICP) and phyto-urease-induced calcium carbonate deposition combined with lignin (EICP combined with lignin) were used to reinforce the peat soil, the changes in mechanical properties of the soil before and after the reinforcement of the peat soil were experimentally investigated, and the effect and mechanism of peat soil reinforcing by the three reinforcing techniques were tested and analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that: compared to the unreinforced remolded peat soil specimens, the unconfined compressive strength (UCS), cohesion and internal friction angle of the specimens reinforced by MICP, EICP and EICP combined with lignin techniques have been greatly improved, and the permeability resistance has been improved by two, two and three orders of magnitude, respectively; the different methods of reinforcing generate different calcium carbonate crystalline phases, with the EICP combined with lignin technique generating the most stable calcite, and the MICP and EICP techniques generating a mixed phase of calcite and spherulitic chalcocite. Analyses showed that for peat soil reinforcement, the acidic environment of peat soil inhibited the growth and reproduction of bacteria, EICP technology was superior to MICP technology, and the addition of lignin solved the defect of the EICP technology that did not have a "nucleation site", so EICP combined with lignin reinforcement was preferred for the improvement of peat soil.

Investigation of Fatigue Strength and Prediction of Remaining Life in the Butt Welds Containing Penetration Defects (블완전용입 맞대기 용접재의 용입깊이에 따른 피로강도특성 및 잔류수명의 산출)

  • Han, Seung Ho;Han, Jeong Woo;Shin, Byung Chun
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.423-435
    • /
    • 1998
  • In this paper fatigue strength reduction of butt weld with penetration defect, which can be seen frequently in the steel bridge, was assessed quantitatively. S-N curves were derived and investigated through the constant amplitude fatigue test of fully or partially penetrated welded specimen made of SWS490 steel. The fracture mechanical method was applied in order to calculate the remaining fatigue life of the partially penetrated butt welds. The fatigue limit of the fully penetrated butt welds was higher than that of category A in AASHTO's fatigue design curves, and the slope of S-N curves with 5.57 was stiffer than that of other result for welded part generally accepted as 3. The fatigue strength of the partially Penetrated butt weld was strongly influenced by the size of lack of penetration, D. It decreased drastically with increasing D from 3.9 to 14.7mm. Fracture behaviour of the partially penetrated butt weld is able to be explained obviously from the beach mark test that a semi-elliptical surface crack with small a/c ratio initiates at a internal weld root and propagates through the weld metal. To estimate the fatigue life of the partially penetrated butt weld with fracture mechanics, stress intensity factors K of 3-dimensional semi-elliptical crack were calculated by appling finite elements method and fracture mechanics parameters such as C and m were derived through the fatigue test of CT-specimen. As a result, the fatigue lives obtained by using the fracture mechanical method agreed well with the experimental results. The results were applied to Sung-Su bridge collapsed due to penetration defects in butt weld of vertical member.

  • PDF

Experimental Evaluation of Weathering Performance for Duplex Coating Systems Combining Thermal Spraying Metals and Painting (금속용사와 도장의 복합피복방식법에 대한 실험적 내후성능평가)

  • Kim, In Tae;Jun, Je Hyong;Cha, Ki Hyuk;Jeong, Young Soo;Ahn, Jin Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.373-382
    • /
    • 2016
  • Painting or thermally sprayed metal coating is often used in corrosion protection of steel structures. In recently, duplex coating system which combines thermally sprayed metals with paint is selected as a new generic type of coatings on steel structures under the highly corrosive environments. In this study, the structural steel specimens were surface treated, thermally sprayed with zinc, zinc-15%aluminum alloy, aluminum and aluminum-5%magnesium alloy, and finally sealing or painted with acrylic urethane. And as a reference specimens, steel specimens were painted with acrylic urethane after surface treatment. Circular defects with 1.0, 3.0 and 5.0 mm in diameters and line defect with 2.0 mm width, which reach the steel substrate were created on all specimens. The specimens were exposed into an environmental testing chamber controlled by the ISO 20340, which is a laboratory cyclic accelerated exposure test condition of spraying/UV/low temperature, for up to 175 days. Based on the corrosion tests, corrosion deterioration from the initial defects were evaluated and weathering performance of the specimens are compared.

Properties of Strength and Stress-Strain of Recycled-Plastic Polymer Concrete (폐플라스틱 재활용 폴리머콘크리트의 강도와 응력-변형률 특성)

  • Jo Byung-Wan;Koo Jakap;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.329-334
    • /
    • 2005
  • The use of Polymer Concrete (PC) is growing very rapidly in many structural and construction applications such as box culverts, hazardous waste containers, trench lines, floor drains and the repair and overlay of damaged cement concrete surfaces in pavements, bridges, etc. However, PC has a defect economically because resin which be used for binder is expensive. Therefore the latest research is being progressed to replace existing resin with new resin which can reduce the high cost. Here, Polymer concrete using the recycled PET(polyethylene terephthalate) has some merits such as decrease of environmental destruction, decrease of environmental pollution and development of new construction materials. The variables of this study are amount of resin, curing condition and maximum size of coarse aggregate to find out mechanic properties of this. Stress-strain curve was obtained using MTS equipment by strain control. The results indicated that modulus of elasticity was increased gradually in an ascending branch of curve, as an increase of resin content. Compressive strength was the highest for resin content of $13\%$. And Compressive strength was increased as maximum size of coarse aggregate increases. The strain at maximum stress increases with an increase of resin content and size of coarse aggregate. For the descending branch of stress-strain curve the brittle fracture was decreased when it was cured at the room temperature compared to high temperature.

An Effective Application of AE Technique for the Detection of Defects in Steel Girder Bridges (강판형교에서의 효율적인 결함검출을 위한 AE기법의 적용)

  • Kim, Sang Hyo;Yoon, Dong Jin;Lee, Sang Ho;Kim, Hyung Suk;Park, Young Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.287-300
    • /
    • 1997
  • In this study, an effective application method of AE technique for the detection of fatigue crack in multi-girder steel bridges has been proposed. The applicability has been examined through the laboratory works with bridge model. The proposed analytical method which evaluates the remaining fatigue lives of structural members may improve the rational determination of the priority of inspection for structural members assuming to have fatigue cracks. Laboratory tests for the application of AE technique to steel girder bridges show that the frequency bands of traffic noise are in the range between 10 show that the frequency bands of traffic noise are in the range between 100~200 kHz and the AE signal raised from fatigue cracks is concentrated around 400~500 kHz. Therefore. R30 sensor is proved to be the most suitable for the detection of cracks in steel girder bridges. A linear proportionality between the crack propagation and the frequency of AE signals has been obtained. In addition, an economic and effective source location method for steel girder bridges was studied through experiments.

  • PDF

A Study on the Damage level of Pavement For The Landscape Urban Community Parks - In case of Dukjin, Choongang, and Dosan Park - (도시 근린 공원내 조경 포장면의 손상 정도에 관한 연구 -덕진(전주), 중앙(청주), 도산(서울) 공원을 중심으로-)

  • 신병철;권상준
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.24 no.3
    • /
    • pp.96-108
    • /
    • 1996
  • This study aimed at choosing the urban community parks such as D Kjin, Chungang, Dosan Park as the target place for this study, and at analyzing the damage level of the pavement surfaces focusing on the spaces and the materials. We devided the damage level within $1.5\times$1.5m grid int the grade from one to five points, and made use of the method of giving marks to get hold of the damage level of the pavement surfaces. Especially we took and analyze Duncan test for the spaces suffering severe damage. The result is as follows : 1. The damage of unenenness turned out to be a most excessive damage in the damage level according to the pavement materials in case of D kjin, and Chunggnag Park. Especially the concrete blocks proved to be the exessive damage in comparison with the other pavement materials, and the demolitional damage of the damage types to the most severe damage. The corner damage turned relatively out to be a heavy damage in case of Dosan Park in Seoul. 2. In the event of the damage level of pavement surfaces according to the spaces, the space which was made the more use of and which was the more concentrated, turned out to be the degree of the more excessive damage. 3. We took the Duncan test to verify the deference of the damage type between the spaces and the pavement materials of the target places for survey. The result of verification was that there was no difference of the damage type between the corner and block damage itself in case of the enterance area and the square of D kjin Park in Ch nju, and that the damage level of the pavement materials proved to be the more execssive damage than that of the spaces. The corner damage of Chungang Park in Hj ngju, showed the same result as D kjin Park in Ch nju and the uneveness didn't have any difference of damage type in all spaces. In case of Dosan in Seoul, the damage of crevice, demolition, and pumping didn't have any difference of damage type and the damage of the cross area was the most high. In conclusion, we proposed that we should get hold of whether the cause of pavement damage is caused by the defect of materials of by the construction problem including the foundation, or the unsuitableness of the method for using the pavement materials, and also that we should take a sensus of the user type and should decide a suitable design load and the necessary thickness of the pavement materials. In this study, not only we aimed at the external damage of the materials, but we tried to propose rather reasonable and developed construction method by studying the material experiment, the foundation state, and the type of using the spaces and materials, and by examining into the fundamental damaged cause.

  • PDF

The Shear Wave Velocity Analysis using Passive Method MASW in the Center of the Metropolis, Gyeongsan (Passive Method MASW 방법을 이용한 경산시 도심구간에서의 전단파 속도 분석)

  • Lee, Hong-Gyu;Kim, Woo-Hyuk;Jang, Seung-Ik;Lee, Seog-Kyu
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.511-516
    • /
    • 2007
  • Active method MASW(Multi channel Analysis of Surface Waves), which is one of the surface wave exploration methods, has the difficulties to supply enough shear wave velocity log, caused by short spread length and lack of low frequency energy. To make up this defect, the passive method MASW survey is taked and analysised in Daeku subway construction site, Jungpyung-dong Gyeongsan city. The passive method MASW using the microtremor, improve the quality of the overtone record by applying the azimuth correction caused offline sources. And combing with active overtone record which is acquired by same geometry has the benefits of improve shallow depth resolution and extend possible investigation depth. To take the optimized acquisition parameters, the 2m, 4m, and 6m geophone spacing is tested. And 2m spacing overtone image could make the reliable shear wave velocity log.

Problem Analysis and Suggestion for Improved Approaches to Ecological Planting and the Establishment of Urban Parks -A Case Study of the Nature Ecological Forest in Yeouido Park, Seoul- (도시공원 생태적 배식의 조성 단계별 문제점 고찰 및 개선방안 -서울시 여의도공원 자연생태의 숲을 사례로-)

  • Seong, Kyong-Ho;Lee, Kyong-Jae;Choi, Jin-Woo;Kim, Jong-Yup
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.2
    • /
    • pp.91-102
    • /
    • 2011
  • This study was carried out to analyze the problems on several steps of the establishment of the Nature Ecological Forest in Yeouido Park, Seoul, and also to suggest improved approaches on each step. For execution drawing, planting models and plans seemed to be uncertain, and the quantity and size of planting trees seemed to be impractical. For construction, the woody plants planted on the site were different in species and size from the planting plan. Ecological planting was somewhat limited because of the inappropriate soil properties. For management, replacement of the dead trees was not executed properly, and no management scheme was prepared after the replacement period. We suggested improved approaches for the establishment of ecological forests in urban areas as follows: for execution drawing, overstory, understory and herbaceous ground cover layers should be composed based on standard plant community structures. Trees that are available from tree markets should be specified in the planting plan. For construction, trees for planting need to be tagged to identify species and size. When tree species and size are changed, they should be checked to ensure that they are proper to the plant community model. Soil information should be collected to check that they fit the target plant community model. For management, the proper amount of trees needs to be specified in the planting plan by applying regular discount rates, especially for trees supplied from the government sector. The replacement period should be extended from two years to five years. The change of plant communities should be monitored during first five years after establishment.