DOI QR코드

DOI QR Code

Investigation on Water Leakage-Induced Tunnel Structure and Ground Responses Using Coupled Hydro-Mechanical Analysis

수리역학 연계해석을 이용한 누수로 인한 터널 구조물 및 지반 거동의 분석

  • Dohyun Park (Deep Subsurface Storage and Disposal Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 박도현 (한국지질자원연구원 심층처분환경연구센터)
  • Received : 2023.08.09
  • Accepted : 2023.08.22
  • Published : 2023.08.31

Abstract

Water leakage in tunnels is a defect that can affect tunnel stability and the ground movement by changing the stress and pore water pressure of the surrounding ground. Long-term or large-scale water leaks may lead to damage of tunnel structure and the surrounding environment, such as tunnel lining instability and ground surface settlement. The present study numerically investigated the effects of water leakage on the structural stability of a tunnel and the ground behavior. The tunnel was assumed to be under undrained conditions for preventing the inflow of the surrounding water and leaks occurred in the concrete lining after completion of the tunnel construction. A coupled hydro-mechanical analysis using a TOUGH-FLAC simulator developed in Python was conducted for assessing the leakage induced-behavior of the tunnel structure and ground under different conditions of the amount and location of water leak. Additionally, the effect of hydro-mechanical coupling terms on the results of coupled response was investigated and discussed.

터널누수는 주변지반의 응력 및 간극수압을 변화시켜 터널 안정성 및 지반변형에 영향을 미칠 수 있는 결함요소이다. 장기간 또는 큰 규모의 누수발생은 터널 라이닝의 불안정성 및 지표침하와 같은 터널 구조물 및 주변지반 환경에 손상을 일으킬 수 있다. 본 연구에서는 누수발생 시 터널의 구조 안정성 및 지반거동에 미치는 영향을 수치해석적으로 분석하였다. 고려된 터널은 내부로 주변 지하수의 유입을 허용하지 않는 비배수 조건으로 가정하였고 터널 완공 후 라이닝에서 누수가 발생하는 것으로 설정하였다. 누수로 인한 터널 구조물 및 지반의 거동을 모사하기 위해 수리역학 연계해석이 수행되었으며 파이썬으로 개발된 TOUGH-FLAC 시뮬레이터가 사용되었다. 누수 발생량과 누수위치를 변화시켜 수치모사가 수행되었으며 수리역학 해석을 위한 연계항들이 복합거동 결과에 미치는 영향을 조사하였다.

Keywords

Acknowledgement

본 연구는 한국지질자원연구원의 기본사업인 '심지층 개발과 활용을 위한 지하심부 특성평가 기술개발(과제코드 GP2020-010)'의 일환으로 수행되었습니다.

References

  1. Ahn, J.S., Kang, K.N., Song, K.I., and Kim, B.C., 2018, A numerical study on the characteristics of small underground cavities in the surrounding old water supply and sewer pipeline, Journal of Korean Tunnelling and Underground Space Association, 20, 287-303. https://doi.org/10.9711/KTAJ.2018.20.2.287
  2. Cappa, F., Rutqvist J., and Yamamoto, K., 2009, Modeling crustal deformation and rupture processes related to upwelling of deep CO2-rich fluids during the 1965-1967 Matsushiro earthquake swarm in Japan, Journal of Geophysical Research, 114, B10304.
  3. Chang, S.H., Lee, G.P., Choi, S.W., and Bae, G.J., 2011, State of the art of segment lining in shield tunnel and statistical analysis of its key design parameters, Tunnel and Underground Space, 21, 427-438. https://doi.org/10.7474/TUS.2011.21.6.427
  4. Choo, J., Lee D.H., and Noh, E.C., 2022, Characteristics of defect on segmental lining of TBM tunnel in operational subway, Journal of Korean Tunnelling and Underground Space Association, 24, 109-128. https://doi.org/10.9711/KTAJ.2022.24.1.109
  5. Dushimimana, A., Niyonsenga, A.A., and Nzamurambaho, F., 2021, A review on strength development of high performance concrete, Construction and Building Materials, 307, 124865.
  6. Heo, S.M., Jung H., and Lee, S.W., 2018, Waterproofing performance evaluation according to each waterproofing material due to segment construction error, Journal of Korean Tunnelling and Underground Space Association, 20, 1023-1037. https://doi.org/10.9711/KTAJ.2018.20.6.1023
  7. Hwang, Y.S., Seo E.J., and Kang, C.H., 2004, Groundwater flow analysis for a rock cavern type radwaste repository, Tunnel and Underground Space, 14, 203-214.
  8. Itasca, 2023, FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) software, http://www.itascacg.com/software/flac3d [Accessed August 2, 2023].
  9. Jeon, J.K., Jeon, C.K., Kim, N.Y., Kim S.M., and Lee, J.E., 2006, A study on controlling of cracks occurred at crown of tunnel concrete lining using model test, Journal of Korean Tunnelling and Underground Space Association, 8, 227-235.
  10. Jung, Y., Pau, G.S.H., Finsterle, S., and Doughty, C., 2018, TOUGH3 user's guide, Lawrence Berkeley National Laboratory, California.
  11. Kim, Y.D., Kong, M.T., Hwang, B.H., and Kim, S.H., 2018, An experimental study on the operation mode of rapid flooding protection system in tunnel, Journal of Korean Tunnelling and Underground Space Association, 20, 1147-1159. https://doi.org/10.9711/KTAJ.2018.20.6.1147
  12. LBNL (Lawrence Berkeley National Laboratory), 2023, TOUGH software, https://tough.lbl.gov/software/tough3 [Accessed August 2, 2023].
  13. Lindstrom, M. and Kveen, A., 2005, Tunnel investigation and groundwater control, Publication no. 107, Norwegian public roads administration, Trondheim.
  14. MOLIT (Ministry of Land, Infrastructure and Transport), 2016, Korean highway bridge design code (limit state design), MOLIT, Sejong.
  15. MOLIT (Ministry of Land, Infrastructure and Transport), 2021, General requirements and the analysis and design of reinforced concrete, MOLIT, Sejong.
  16. Persson, B., 1999, Poisson's ratio of high-performance concrete, Cement and Concrete Research, 29, 1647-1653. https://doi.org/10.1016/S0008-8846(99)00159-3
  17. Pruess, K., 2004, The TOUGH codes - a family of simulation tools for multiphase flow and transport processes in permeable media, Vadose Zone Journal, 3, 738-746. https://doi.org/10.2113/3.3.738
  18. Rutqvist, J., Barr, D., Birkholzer, J.T., Chijimatsu, M., Kolditz, O., Liu, Q., Oda, Y., Wang, W., and Zhang, C., 2008a, Results from an international simulation study on coupled thermal, hydrological, and mechanical (THM) processes near geological nuclear waste repositories, Nuclear Technology, 163, 101-109. https://doi.org/10.13182/NT08-A3974
  19. Rutqvist, J., Birkholzer J.T., and Tsang, C.F., 2008b, Coupled reservoir-geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir-caprock systems, International Journal of Rock Mechanics and Mining Sciences, 45, 132-143. https://doi.org/10.1016/j.ijrmms.2007.04.006
  20. Rutqvist, J., Barr, D., Datta, R., Gens, A., Millard, A., Olivella, S., Tsang, C.F., and Tsang, Y., 2005, Coupled thermal-hydrological-mechanical analysis of the Yucca Mountain Drift Scale Test - comparison of field results to predictions of four different models, International Journal of Rock Mechanics and Mining Sciences, 42, 680-697. https://doi.org/10.1016/j.ijrmms.2005.03.008
  21. Rutqvist, J., Birkholzer, J., Cappa, F., and Tsang, C.F., 2007, Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis, Energy Conversion and Management, 48, 1798-1807. https://doi.org/10.1016/j.enconman.2007.01.021
  22. Rutqvist, J., Birkholzer, J., Cappa, F., Oldenbuerg, C., and Tsang, C.F., 2006, Shear-slip analysis in multiphase fluid-flow reservoir engineering applications using TOUGH-FLAC, Proceedings of the TOUGH Symposium 2006, Lawrence Berkeley National Laboratory, Berkeley, California, (Electronic resource).
  23. Rutqvist, J., Wu, Y.S., Tsang, C.F., and Bodvarsson, G., 2002, A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock, International Journal of Rock Mechanics and Mining Sciences, 39, 429-442. https://doi.org/10.1016/S1365-1609(02)00022-9
  24. Shim, H.J., Park, T.J., Jeong, W.C., Kim, H.Y., and Choi, Y.T., 2010, Estimation of water leak rate in the underground oil storage cavern, Tunnel and Underground Space, 20, 233-240.
  25. Shin, J.H., Shin, Y.S., Park, D.I., Chae, S.E., and Choi, K.H., 2009, A study on hydraulic behaviour and leakage control of segment linings using the numerical method, Journal of Korean Tunnelling and Underground Space Association, 11, 131-140. https://doi.org/10.9711/KTAJ.2009.11.2.131
  26. Touhidi-Baghini, A., 1998, Absolute permeability of Mcmurray formation oil sands at low confining stresses, Ph.D. dissertation, University of Alberta, Canada.