• Title/Summary/Keyword: Construction Period Reduction

Search Result 222, Processing Time 0.027 seconds

In-situ Production Effect Analysis of Precast Concrete Elements (PC 부재의 현장 생산효과 분석)

  • Lee, Dong-Joo;Oh, Jin-Hyuck;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.52-53
    • /
    • 2021
  • PC (Precast Concrete) method was preferred for reasons such as shortening of construction period, cost reduction, and quality. However, in the case of factory production, precast concrete has a problem in that transportation conditions in the transportation process, damage during transportation, overhead and profit of the factory are required. If work and PC members are produced on site, transportation and installation costs can be reduced. However, research on field production has not been conducted. Therefore, based on the on-site production plan without PC, the cost and quality of factory production and on-site production are compared and analyzed.

  • PDF

Evaluation of Strength of Normal and Lightweight Aggregate Concrete Using Ultrasonic Velocity Method in Early Age (초기 재령에서 초음파 속도법을 활용한 보통 및 경량 골재 콘크리트의 강도 발현 평가)

  • Nam, Young-Jin;Kim, Won-Chang;Choi, Hyeong-Gil;Ryu, Jung-Rim;Lee, Tae-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.55-56
    • /
    • 2023
  • Recently, large and high-rise buildings are increasing, and accordingly, concrete weight reduction is required. Lightweight aggregate concrete can provide economic feasibility and large space, but safety can be reduced due to problems such as low strength and poor durability. Since the development of such low strength of concrete is important in the early construction stage, it is necessary to evaluate the vertical formwork demolding period at the early age. The correlation was analyzed by measuring the compressive strength and ultrasonic pulse velocity. As a result, the ultrasonic pulse rates of normal and lightweight aggregate concrete at the time of 5 MPa expression, which is the time of vertical mold deformation, were 3.07 km/s and 2.77 km/s for W/B 41, and 2.89 km/s and 2.73 km/s for W/B 33.

  • PDF

Curing Temperature of Concrete Using Bubble Sheet with Carbon-based Photothermal Materials (탄소계 광발열 소재 혼입 버블시트를 적용한 콘크리트의 양생온도 특성)

  • Lee, Seung-Min;Lee, Hyeon-Jik;Baek, Sung-Jin;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.45-46
    • /
    • 2023
  • This study examined the curing temperature of concrete with a photothermal insulation sheet to shorten the curing time of concrete as part of construction cost and period reduction. According to the experiment results, the heating performance effect is confirmed through the temperature difference between photothermal insulation sheet and bubble sheet. And it has a high curing temperature in the order of bubble sheet (photo heating material B) > bubble sheet (photo heating material A) > bubble sheet on same layers.

  • PDF

Strategy for Facilitating Old Aged Apartment Remodeling through Technology Analysis for Space Expansion (노후공동주택 리모델링시의 평면확장 적용공법 분석을 통한 활성화 방안 수립)

  • Lee, Dong-Gun;Cha, Hee-Sung;Kim, Wan-Hyuk;Shin, Dong-Woo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.6
    • /
    • pp.147-155
    • /
    • 2008
  • In the 1970s, increasing penetration of the housing co-housing policy, reconstruction be a great success to improve 1990‘s Old aged apartment's performance. However, in case of reconstruction, it causes the problem such as city environment destruction, resource waste, real-estate speculation etc. With the trend of sustainable construction and resource recycling, remodeling gets more attention than before. In case of country's remodeling, conventional method causes some problems such as delayed construction period and increased cost. Therefore, efforts that obtain economical efficiency are required to power remodeling through use of prefabrication method like PC technology that is useful for reduction effect of construction period, cost and site labor and excellent quality. This research indicates reduceing factor for facilitating prefabrication method and technology selecting framework through specific of Expanding Floor method and remodeling cases to increase the efficiency of remodeling, considers construction parties approaching plan for prefabrication as occasion that powers remodeling.

A Case Study of GTX A Tunnel Station Blasting with Electronic Detonator (GTX A 터널정거장에 대한 전자뇌관 적용 시공 사례)

  • Hwang, Nam-Sun;Kim, Kyung-Hyun;Kim, Jeoung-Hwan;Seong, Yoo-Hyeon;Lee, Chang-Won
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.24-34
    • /
    • 2021
  • Electronic detonators are widely used in various construction sites due to accurate delay time. Including the cases with exceeded noise and vibration from site using electric/non-electric detonator, electronic detonators are used to improve blast fragmentation or to reduce the cost of secondary partial blasting. Furthermore, the number of cases using electronic detonators are increased for reduction of the cost and construction period by maximizing operations efficiency. This case study is about applying electronic detonators on large section station, tunnel construction site which is the part of urban area GTX A project. Although it was initially planned to utilize non-electric detonators, damage was inflicted on safety-thing. We have considered blasting method using electronic detonators as solution of this problem. By applying electronic detonators, we not only satisfied environmental regulations but also prevented nearby safety-thing from getting damaged. In addition, we were able to shorten the construction period than the initial plan by conducting single simultaneous blasting on large section station, in order to ensure safe and efficient construction.

Study on the Engineering Properties of 150MPa Ultra-high Strength Concrete

  • Jung, Sang-Jin;Yoshihiro, Masuda;Kim, Woo-Jae;Lee, Young-Ran;Kim, Seong-Deok;Ha, Jung-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.113-122
    • /
    • 2010
  • In this study, 150MPa ultra-high-strength concrete was manufactured, and its performance was reviewed. As technically meaningful autogenous shrinkage reportedly occurs at a W/B ratio of 40% or less, although it occurs in all concrete regardless of the W/B ratio, the effects of the use of expansive admixture and shrinkage reducer, or of the friction and restraint of forms that may result in the effective reduction of autogenous shrinkage, were reviewed. As a result, considering the flow and strength characteristics, it was found that the slump flow time was shorter with expansive admixture, and shortest with shrinkage reducer. All specimens with $30kg/m^3$ expansive admixture showed high strength at early material age. Their strength decreased due to the expansion cracks when there was excessive use of expansive admixture, and the use of shrinkage reducer did not influence the change in the strength according to the material age. The expansive admixture had a shrinkage reduction effect of 80%, while the shrinkage reducer had a shrinkage reduction effect of 30%, indicating that the expansive admixture had a stronger effect. It seems that mixing the two will have a synergistic effect. The shrinkage reduction rate was highest when the W/B ratio was 20%. The form suppressed the expansion and shrinkage at the early period, and the demolding time did not significantly influence the shrinkage. The results of the study showed that the excessive addition of expansive admixture leads to expansion cracks, and the expansive admixture and shrinkage reducer have the highest shrinkage reduction effect when they are mixed.

The Study of Project Management Information System Establishment for Construction (건설사업관리 정보시스템(PMIS)구축에 관한 연구)

  • Yoon Jae-Ho;Moon Young-Il
    • Korean Journal of Construction Engineering and Management
    • /
    • v.3 no.4 s.12
    • /
    • pp.132-138
    • /
    • 2002
  • Recently, utilization of PMIS(Project Management Information System) is in high demand as it is desired to advance the construction market through cost reduction and quality improvement within the given schedule. However, PMIS developed by individual projects are mostly evolving around construction progress status due to the temporary nature of development period and use of the system by project executers is no more than perfunctory that results in limiting the effective communication between the project owner, project manager and constructor. Therefore, the purpose of this paper is to review the PMIS developed so far, and present the direction for an effective PMIS.

Analysis and Reduction for Risk factors of Construction Projects (건설공사의 리스크인자 분석 및 경감에 관한 연구)

  • Chung Byoung-Hwa;Chung Young-Shik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.2 no.4 s.8
    • /
    • pp.62-68
    • /
    • 2001
  • The purpose of this study was to Identification the Risk of construction method to protect and reduce of construction period. Risk management is one of the key project management process. Numerous tools are available to support the various phases of the risk management process. We present the results of a study designed to identify the tools that are most widely used and those that are associated with successful project management in general, and with effective project risk management in particular. The study is based on a questionnaire administered to a sample of project managers from construction enterprises. The response data was analyzed in order to find which tools are more likely to be used in the those organizations that report better project management performance and in those that value the contribution of risk management processes.

  • PDF

Bearing Capacity Evaluation of Drilled Shaft for Top & Down Method (탑다운 기초 현장타설말뚝의 지지력 평가)

  • Cho, Chun-Whan;Kim, Hong-Mook;Kim, Woong-Kyu;Kwon, Se-Oh;Sung, Byung-Wan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.58-65
    • /
    • 2004
  • Recently, the top & down method with drilled shafts as a foundation of high rise building is often adopted for the purpose of construction period reduction and construction cost effectiveness. It is common to omit the loading test as a Quality assurance on account of the high capacity of drilled shafts for the top & down method. It seems that the capacity of drilled shaft in recent top & down method is beyond that of conventional loading test method.However, the quality assurance for the drilled shaft as foundation of high rise building becomes much more important since the drilled shaft should bear much higher working load. It may be a small scale test pile could be an alternative as a quality assurance for the drilled shaft with high capacities. Through a case study, this paper gives an idea for solving the limitation of the conventional loading test method for the quality assurance of drilled shaft with high capacities. In particular, this paper analyzed the scale effect for a small drilled shaft installed into bedrock, which could be used for an alternative.

  • PDF

Field Application of Up-Up Construction Using Buried Wale Continuous Walt System Method (CWS공법(Buried Wale Continuous Wall System)을 적용한 Up-Up 시공사례)

  • Lee Jeong-Bae;Lim In-Sig;Kim Dong-Hyun;Oh Bo-Hwan;Ha In-Ho;Rhim Hong-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.1-4
    • /
    • 2006
  • A down construction method is frequently used in these days to reduce popular discontent and to assure sufficient working space at early stage in downtown area. There are two main problems in the existing down construction method. One is a confliction between frame works and excavation works, and the other is a cold joint in retaining wall which is unavoidable due to a sequence of concrete placement and induces a water leakage. Therefore, a new method is needed to overcome these problems. The CWS (buried wale Continuous Wall System) method was developed by authors. By replacing RC perimeter beam with embedded steel wale, the steel frame works of substructure can be simplified and the water leakage can be prevented using continuous retaining wall. Consequently, the improved duality and reduction of construction period can be obtained from CWS method.

  • PDF