• 제목/요약/키워드: Constraint Effect

검색결과 444건 처리시간 0.029초

Effect of constraint severity in optimal design of groundwater remediation

  • Ko, Nak-Youl;Lee, Kang-Kun
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.217-221
    • /
    • 2003
  • Variation of decision variables for optimal remediation using the pump-and-treat method is examined to estimate the effect of the degree of concentration constraint. Simulation-optimization method using genetic algorithm is applied to minimize the total pumping volume. In total volume minimization strategy, the remediation time increases rapidly prior to significant increase in pumping rates. When the concentration constraint is set severer, the more wells are required and the well on the down-gradient direction from the plume hot-spot gives more efficient remediation performance than that on the hot-spot position. These results show that the more profitable strategy for remediation can be achieved by increasing the required remediation time than raising the pumping rate until the time reaches a certain limitation level. So, the remediation time has to be considered as one of the essential decision variables fer optimal remediation design.

  • PDF

Effect of dissimilar metal SENB specimen width and crack length on stress intensity factor

  • Murthy, A. Ramachandra;Muthu Kumaran, M.;Saravanan, M.;Gandhi, P.
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1579-1586
    • /
    • 2020
  • Dissimilar metal joints (DMJs) are more common in the application of piping system of many industries. A 2- D and 3-D finite element analysis (FEA) is carried out on dissimilar metal Single Edged Notch Bending (DMSENB) specimens fabricated from ferritic steel, austenitic steel and Inconel - 182 alloy to study the behavior of DMJs with constraints by using linear elastic fracture mechanics (LEFM) principles. Studies on DMSENB specimens are conducted with respect to (i) dissimilar metal joint width (DMJW) (geometrical constraints) (5 mm, 10 mm, 20 mm, 30 mm and 50 mm) (ii) strength mismatch (material constraints) and (iii) crack lengths (16 mm, 20 mm and 24 mm) to study the DMJ behavior. From the FEA investigation, it is observed that (i) SIF increases with increase of crack length and DMJWs (ii) significant constraint effect (geometry, crack tip and strength mismatch) is observed for DMJWs of 5 mm and 10 mm (iii) stress distribution at the interfaces of DMSENB specimen exhibits clear indication of strength mismatch (iv) 3-D FEA yields realistic behavior (v) constraint effect is found to be significant if DMJW is less than 20 mm and the ratio of specimen length to the DMJW is greater than 7.4.

구속효과를 구려한 가스배관 결함의 2차원적 파괴거동 해석에 관한 연구 (A Study on the Fracture Behavior of a Two Dimensional Crack in Gas Pipelines Considering Constraint Effects)

  • 심도준;장영균;최재붕;김영진;김철만
    • 대한기계학회논문집A
    • /
    • 제25권1호
    • /
    • pp.61-69
    • /
    • 2001
  • EFP(Fitness For Purpose) type defect assessment methodologies based on ECA(Engineering Critical Analysis) have been established and are in use for the structural integrity evaluation of gas pipelines. ECA usually includes the fracture mechanics analysis, and it is assumed that the J-integral uniquely characterizes the crack-tip stress-strain field. However, it has been proven that the J-integral alone can not be sufficient to characterize the crack-tip field under low levels of constraint with a single parameter. Since pipeline structures are made of ductile material, locally loaded in tension, cracks may experience low level of constraint, and therefore, J-dominance will be lost. For this reason, the level of constraint must be quantified to establish a precise assessment procedure for pipeline defects. The objective of this paper is to investigate the fracture behavior of a crack in gas pipeline(KS D 3507) by quantifying the level of constraint. For this purpose, tensile tests and CTOD tests were performed at room temperature(24$\^{C}$) and low temperature(-40$\^{C}$) to obtain the material properties. J-Q analyses were performed for SENB and SENT specimens based on 2-D finite element analyses, in order to investigate the in-plane constraint effects on pipeline defects. For precise assessment of cracks, especially shallow cracks, in KS D 3507 pipeline, constraint effect must be considered.

Differences in the Control of Anticipation Timing Response by Spatio-temporal Constraints

  • Seok-Hwan LEE;Sangbum PARK
    • Journal of Sport and Applied Science
    • /
    • 제7권2호
    • /
    • pp.39-51
    • /
    • 2023
  • Purpose: The purpose of this study was to investigate differences in the control process to satisfy spatial and temporal constraints imposed upon the anticipation timing response by analyzing the effect of spatio-temporal accuracy demands on eye movements, response accuracy, and the coupling of eye and hand movements. Research design, data, and methodology: 12 right-handed male subjects participated in the experiment and performed anticipation timing responses toward a stimulus moving at three velocities (0.53m/s, 0.66m/s, 0.88m/s) in two task constraint conditions (temporal constraint, spatial constraint). During the response, response accuracy and eye movement patterns were measured from which timing and radial errors, the latency of saccade, fixation duration of the point of gaze (POG), distance between the POG and stimulus, and spatio-temporal coupling of the POG and hand were calculated. Results: The timing and radial errors increased with increasing stimulus velocity, and the spatio-temporal constraints led to larger timing errors than the temporal constraints. The latency of saccade and the temporal coupling of eye and hand decreased with increasing stimulus velocity and were shorter and longer respectively in the spatio-temporal constraint condition than in the temporal constraint condition. The fixation duration of the POG also decreased with increasing stimulus velocity, but no difference was shown between task constraint conditions. The distance between the POG and stimulus increased with increasing stimulus velocity and was longer in the temporal constraint condition compared to the spatio-temporal constraint condition. The spatial coupling of eye and hand was larger with the velocity 0.88m/s than those in other velocity conditions. Conclusions: These results suggest that differences in eye movement patterns and spatio-temporal couplings of stimulus, eye and hand by task constraints are closely related with the accuracy of anticipation timing responses, and the spatial constraints imposed may decrease the temporal accuracy of response by increasing the complexity of perception-action coupling.

운동 중첩에 의한 직선적 윤곽의 방위 지각 (Perceiving the Orientation of Linear Edges from Kinetic Occlusion)

  • 정우현;정찬섭
    • 인지과학
    • /
    • 제17권3호
    • /
    • pp.151-175
    • /
    • 2006
  • 운동 중첩에 의해 배경의 유도 요소들이 차례로 사라질 때 유도 요소들이 사라지는 순서와 이들이 이루는 각도는 직선적 윤곽의 방위가 존재할 수 있는 범위를 한정시켜 준다. 이러한 제약 범위의 시간적 통합에 의해 운동중첩에 의한 윤곽 추출 과정을 설명하는 공통 제약 범위 모형을 제안하고 그것의 타당성을 검증하기 위해 다섯 편의 실험을 수행하였다. 실험 결과 윤곽 방위에 대한 공통 제약 범위 각의 크기가 작을수록 윤곽 방위 지각의 정확율이 높은 것으로 나타났다. 운동 중첩 요소의 수를 증가시키거나 요소들 사이의 거리를 변화시키더라도 제약 범위가 일정하다면 윤곽지각의 정확율은 높아지지 않는 것으로 나타났다. 이러한 실험 결과는 윤곽 방위에 대한 공통 제약 범위 모형을 지지해주는 것으로 해석될 수 있으며 운동 중첩에 의해 윤곽을 지각하는 과정에 배경 텍스쳐의 밀도 자체보다 운동 중첩에 의해 결정되는 공통 제약 범위 각의 크기가 더 중요한 역할을 할 수 있다는 것을 시사한다.

  • PDF

뇌졸중 환자의 건측억제유도와 자기효능에 대한 이해 (Understanding the constraint induced movement and Self-efficacy in Stroke Patients)

  • 신형수;김중선
    • PNF and Movement
    • /
    • 제3권1호
    • /
    • pp.35-45
    • /
    • 2005
  • Objectives : The purpose of this study was to understanding the constraint induced movement and Self-efficacy with arm training on upper motor function in Stroke Patients. Methods : Stroke, the leading cause of functional disability, causes a variety of impairments that compromise quality of life. Upper limb hemiparesis, a commonly seen impairment, is particularly problematic given its impact on activities of daily living. Because stroke was a disease to correspond to the first during domestic cause of death, and was accompanied by a lot of side aftereffects after a survival, stroke rehabilitation bought a patient and a family and a physical therapist, and it was main concern of. Results : Looks into upper extremity excrise of a subacute stroke patient estranged a acute convalescence later by a rehabilitation treatment in this consideration, and evaluates an effect to wind up constraint induced movement for an early treatment of stroke and Self efficacy, and help is one to an early rehabilitation of an stroke patient. Conclusions : Overuse sound tends after the stroke occurrence in the early stage in order to recompense for stroke, and at the time of a new aspect called learned nonuse syndrome by a movement of a paralysis part dusting off wealth with this step thing later. Constraint induced movement using self efficacy could be an effective for improving function of stroke.

  • PDF

Constraint-Combined Adaptive Complementary Filter for Accurate Yaw Estimation in Magnetically Disturbed Environments

  • Jung, Woo Chang;Lee, Jung Keun
    • 센서학회지
    • /
    • 제28권2호
    • /
    • pp.81-87
    • /
    • 2019
  • One of the major issues in inertial and magnetic measurement unit (IMMU)-based 3D orientation estimation is compensation for magnetic disturbances in magnetometer signals, as the magnetic disturbance is a major cause of inaccurate yaw estimation. In the proposed approach, a kinematic constraint is used to provide a measurement equation in addition to the accelerometer and magnetometer signals to mitigate the disturbance effect on the orientation estimation. Although a Kalman filter (KF) is the most popular framework for IMMU-based orientation estimation, a complementary filter (CF) has its own advantages over KF in terms of mathematical simplicity and ease of implementation. Accordingly, this paper introduces a quaternion-based CF with a constraint-combined correction equation. Furthermore, the weight of the constraint relative to the magnetometer signal is adjusted to adapt to magnetic environments to optimally deal with the magnetic disturbance. In the results of our validation experiments, the average and maximum of yaw errors were $1.17^{\circ}$ and $1.65^{\circ}$ from the proposed CF, respectively, and $8.88^{\circ}$ and $14.73^{\circ}$ from the conventional CF, respectively, showing the superiority of the proposed approach.

CT시험편의 크기 변화에 따른 파괴저항곡선의 변화 (Variation of the Fracture Resistance Curve with the Change of a Size in the CT Specimen)

  • 석창성;김수용
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.2963-2971
    • /
    • 2000
  • In order to obtain more realistic fracture resistance curve, research is currently underway to introduce new parameter and to quantify the constraint effect. The objective of this study is to investigate the relationship between the constraint effect of a size(plane size and thickness) and the fracture resistance curve. In this paper fracture toughness tests were performed with various plane size and various thickness of specimens in two materials. The test results showed that the effects of plane size in th4 J-R curve were significant and the curve was risen with an increase in plane size. However, relatively weak influence was observed form the change of the specimen thickness and size. The stress fields near the crack tip of th specimen is close to the HRR field according to increasing the plane size and Q stress appears different value according to material properties and the plane size.

Development of Cleavage Fracture Toughness Locus Considering Constraint Effects

  • Chang, Yoon-Suk;Kim, Young-Jin;Ludwig Stumpfrock
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2158-2173
    • /
    • 2004
  • In this paper, the higher order terms in the crack tip stress fields are investigated macroscopically for more realistic assessment of structural material behaviors. For reactor pressure vessel material of A533B ferritic steel, effects of crack size and temperature have been evaluated using 3-point SENB specimens through a series of finite element analyses, tensile tests and fracture toughness tests. The T-stress, Q-parameter and q-parameter as well as the K and J-integral are calculated and mutual relationships are investigated also. Based on the evaluation, it has proven that the effect of crack size from standard length (a/W=0.53) to shallow length (a/W=0.11) is remarkable whilst the effect of temperature from -20$^{\circ}C$ to -60$^{\circ}C$ is negligible. Finally, the cleavage fracture toughness loci as a function of the promising Q-parameter or q-parameter are developed using specific test results as well as finite element analysis results, which can be applicable for structural integrity evaluation considering constraint effects.

열에너지를 고려한 파괴인성치 고찰 (Evaluation for Fracture Toughness with Considering the Thermal Energy)

  • 박재실;김정표;석창성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.9-15
    • /
    • 2001
  • In the case of a crack propagation, a portion of the work of inelastic deformation near the crack tip is dissipated as heat. In order to understand the thermal effect on fracture toughness, tensile test was carried out using thermocouples to monitor the variation of temperature with SA516 Gr70. The experimental results show that the temperature of specimen was increased $3.6^{\circ}C$ at static load condition. And the thermal effect was investigated connected with the steady-state stress in the vicinity of a crack propagation in the elastic-plastic C-T specimen theoretically. And fracture toughness, the energy to make crack surfaces, presented correctively. The fracture toughness with considering heat at the blunting of the crack tip ws lower about 19.3% than that of ignoring heat. So, it is resonable to apply the fracture toughness with considering thermal energy and it would be good explanation for constraint effect depending on the configuration in the presence of excessive plasticity.

  • PDF