Browse > Article
http://dx.doi.org/10.1016/j.net.2019.12.018

Effect of dissimilar metal SENB specimen width and crack length on stress intensity factor  

Murthy, A. Ramachandra (CSIR-Structural Engineering Research Centre)
Muthu Kumaran, M. (CSIR-Structural Engineering Research Centre)
Saravanan, M. (CSIR-Structural Engineering Research Centre)
Gandhi, P. (CSIR-Structural Engineering Research Centre)
Publication Information
Nuclear Engineering and Technology / v.52, no.7, 2020 , pp. 1579-1586 More about this Journal
Abstract
Dissimilar metal joints (DMJs) are more common in the application of piping system of many industries. A 2- D and 3-D finite element analysis (FEA) is carried out on dissimilar metal Single Edged Notch Bending (DMSENB) specimens fabricated from ferritic steel, austenitic steel and Inconel - 182 alloy to study the behavior of DMJs with constraints by using linear elastic fracture mechanics (LEFM) principles. Studies on DMSENB specimens are conducted with respect to (i) dissimilar metal joint width (DMJW) (geometrical constraints) (5 mm, 10 mm, 20 mm, 30 mm and 50 mm) (ii) strength mismatch (material constraints) and (iii) crack lengths (16 mm, 20 mm and 24 mm) to study the DMJ behavior. From the FEA investigation, it is observed that (i) SIF increases with increase of crack length and DMJWs (ii) significant constraint effect (geometry, crack tip and strength mismatch) is observed for DMJWs of 5 mm and 10 mm (iii) stress distribution at the interfaces of DMSENB specimen exhibits clear indication of strength mismatch (iv) 3-D FEA yields realistic behavior (v) constraint effect is found to be significant if DMJW is less than 20 mm and the ratio of specimen length to the DMJW is greater than 7.4.
Keywords
Dissimilar metal joint; Finite element analysis; Dissimilar metal single edged notch bending specimen; Constraint effect; LEFM;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 J. Yang, G.Z. Wang, F.Z. Xuan, S.T. Tu, Unified correlation of in-plane and out-of-plane constraint with fracture resistance of a dissimilar metal welded joint, Eng. Fract. Mech. 115 (2014) 296-307, https://doi.org/10.1016/j.engfracmech.2013.11.018.   DOI
2 C.A. Della Rovere, C.R. Ribeiro, R. Silva, N.G. Alcantara, S.E. Kuri, Local mechanical properties of radial friction welded supermartensitic stainless steel pipes, Mater. Des. 56 (2014) 423-427, https://doi.org/10.1016/j.matdes.2013.11.020.   DOI
3 Bin Qiang, Xin Wang, Ductile crack growth behaviors at different locations of a weld joint for an X80 pipeline steel: a numerical investigation using GTN models, Eng. Fract. Mech. 213 (2019) 264-279, https://doi.org/10.1016/j.engfracmech.2019.04.009.   DOI
4 Jin Weon Kim, Myung Rak Choi, Yun Jae Kim, Effect of loading rate on the fracture behavior of nuclear piping materials under cyclic loading conditions, Nucl. Eng. Technol. 48 (2016) 1376-1386, https://doi.org/10.1016/j.net.2016.06.006.   DOI
5 Marco Gonzalez, Paulo Teixeira, Jeanette Gonzalez, Raul Machado, Numerical analysis of fracture mechanics of SENB specimens prepared from HDPE pipes, in: Proceedings of the ASME 2014 Pressure Vessels & Piping Conference, California, USA, 2014, https://doi.org/10.1115/PVP2014-28718. July 20-24.
6 M.Y. Mu, G.Z. Wang, F.Z. Xuan, S.T. Tu, Unified correlation of in-plane and out-of-plane constraints with cleavage fracture toughness, Theor. Appl. Fract. Mech. 80 (2015) 121-132, https://doi.org/10.1016/j.tafmec.2015.10.005.   DOI
7 K. Fan, G.Z. Wang, F.Z. Xuan, S.T. Tu, Local failure behavior of a dissimilar metal interface region with mechanical heterogeneity, Eng. Fail. Anal. 59 (2016) 419-433, https://doi.org/10.1016/j.engfailanal.2015.11.005.   DOI
8 W. Musraty, B. Medjo, N. Gubeljak, A. Likeb, I. Cvijovic-Alagic, A. Sedmak, M. Rakin, Ductile fracture of pipe-ring notched bend specimens - micromechanical analysis, Eng. Fract. Mech. 175 (2017) 247-261, https://doi.org/10.1016/j.engfracmech.2017.01.022.   DOI
9 S. Kumar, P.K. Singh, K.N. Karn, V. Bhasin, Experimental investigation of local tensile and fracture resistance behavior of dissimilar metal weld joint: SA508 Gr.3 Cl.1 and SA312 Type 304LN, Fatigue Fract. Eng. M. 40 (2016) 190-206, https://doi.org/10.1111/ffe.12484.
10 Hiroshi Tada, Paul C. Paris, George R. Irwin, The Stress Analysis of Cracks Handbook, third ed., ASME Press, 2000 https://doi.org/10.1115/1.801535.
11 Yu G. Matvienko, Maximum average tangentical stress criterion for prediction of the crack path, Int. J. Fract. 176 (2012) 113-118, https://doi.org/10.1007/s10704-012-9715-1.   DOI
12 B. Vieille, J.D. Pujols Gonzalez, C. Bouvet, Prediction of the ultimate strength of quasi-isotropic TP-based laminates from tensile and compressive fracture toughness at high temperature, Compos. B Eng. 164 (2019) 437-446, https://doi.org/10.1016/j.compositesb.2019.01.056.   DOI
13 Jie Yang, Lei Wang, Fracture mechanism of cracks in the weakest location of dissimilar metal welded joint under the interaction effect of in-plane and out-of-plane constraints, Eng. Fract. Mech. 192 (2018) 12-23, https://doi.org/10.1016/j.engfracmech.2018.02.008.   DOI
14 M.K. Samal, M. Seidenfuss, E. Roos, K. Balani, Investigation of failure behavior of ferritic-austenitic type of dissimilar steel welded joints, Eng. Fail. Anal. 18 (2011) 999-1008, https://doi.org/10.1016/j.engfailanal.2010.12.011.   DOI
15 H.T. Wang, G.Z. Wang, F.Z. Xuan, S.T. Tu, An experimental investigation of local fracture resistance and crack growth paths in a dissimilar metal welded joint, Mater. Des. 44 (2013) 179-189, https://doi.org/10.1016/j.matdes.2012.07. 067.   DOI
16 Sachin Kumar, I.V. Singh, B.K. Mishra, XFEM simulation of stable crack growth using J-R curve under finite strain plasticity, Int. J. Mech. Mater. Des. 10 (2014) 165-177, https://doi.org/10.1007/s10999-014-9238-1.   DOI
17 Haitao Wang, Guozhen Wang, Fuzhen Xuan, Changjun Liu, Shantung Tu, Local mechanical properties and microstructures of Alloy52M dissimilar metal welded joint between A508 ferritic steel and 316L stainless steel, Adv. Mater. Res. 509 (2012) 103-110, https://doi.org/10.4028/www.scientific.net/AMR.509.103.   DOI
18 Jiankai Tang, Liu Zheng, Shouwen Shi, Xu Chen, Evaluation of fracture toughness in different regions of weld joints using unloading compliance and normalization method, Eng. Fract. Mech. 195 (2018) 1-12, https://doi.org/10.1016/j.engfracmech.2018.03.022.   DOI
19 Dai Yue, Jie Yang, Lei Wang, Effect range of the material constraint-II, Interface crack, Metals 9 (1-10) (2019) 696, https://doi.org/10.3390/met9060696.   DOI
20 Jian-Ping Zuo, Yu-Lin Li, Cunhui Liu, Hai-yan Liu, Jintao Wang, Hong-tao Li, Lei Liu, Meso-fracture mechanism and its fracture toughness analysis of Longmaxi shale including different angles by means of M-SENB tests, Eng. Fract. Mech. 215 (2019) 178-192, https://doi.org/10.1016/j.engfracmech.2019.05.009.   DOI
21 Junnan Lv, Li Yu, Wei Du, Qun Li, Theoretical approach of characterizing the crack-tip constraint effects associated with material's fracture toughness, Arch. Appl. Mech. 88 (2018) 1637-1656, https://doi.org/10.1007/s00419-018-1392-8.   DOI
22 J. Wang, G.Z. Wang, F.Z. Xuan, S.T. Tu, Constraint-Dependent J-R curves of a dissimilar metal welded joint for connecting pipe-nozzle of nuclear pressure vessel, J. Press. Vessel Technol. 137 (1-8) (2014), 021405, https://doi.org/10.1115/1.4028993.
23 Ad Bakker, Elastic-plastic fracture mechanics analysis of an SENB specimen, Int. J. Press. Vessel. Pip. 10 (1982), https://doi.org/10.1016/0308-0161(82)90004-7. .
24 H.T. Wang, G.Z. Wang, F.Z. Xuan, S.T. Tu, Numerical investigation of ductile crack growth behavior in a dissimilar metal welded joint, Nucl. Eng. Des. 241 (2011) 3234-3243, https://doi.org/10.1016/j.nucengdes.2011.05.010.   DOI
25 B. Younise, M. Rakin, N. Gubeljak, B. Medjob, A. Sedmak, Effect of material heterogeneity and constraint conditions on ductile fracture resistance of welded joint zones - micromechanical assessment, Eng. Fail. Anal. 82 (2017) 435-445, https://doi.org/10.1016/j.engfailanal.2017.08.006.   DOI
26 K. Karthick, S. Malarvizhi, V. Balasubramanian, S.A. Krishnan, G. Sasikala, Shaju K. Albert, Tensile and impact toughness properties of various regions of dissimilar joints of nuclear grade steels, Nucl. Eng. Technol. 50 (2018) 116-125, https://doi.org/10.1016/j.net.2017.10.003.   DOI
27 Primoz Stefanea, Sameera Naib, Stijn Hertele, Wim De Waele, Nenad Gubeljak, Crack tip constraint analysis in welded joints with pronounced strength and toughness heterogeneity, Theor. Appl. Fract. Mech. 103 (2019) 102293, https://doi.org/10.1016/j.tafmec.2019.102293.   DOI
28 K. Fan, G.Z. Wang, F.Z. Xuan, S.T. Tu, Local fracture resistance behavior of interface regions in a dissimilar metal welded joint, Eng. Fract. Mech. 136 (2015) 279-291, https://doi.org/10.1016/j.engfracmech.2015.02.007.   DOI
29 B. Moran, C.F. Shih, Crack tip and associated domain integrals from momentum and energy balance, Eng. Fract. Mech. 27 (1987) 615-642, https://doi.org/10.1016/0013-7944(87)90155-X.   DOI
30 E. John, Srawley, Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimen, Int. J. Fract. 12 (1976) 475-476, https://doi.org/10.1007/BF00032844.   DOI
31 C.F. Shih, R.J. Asaro, Elastic-plastic analysis of cracks on bimaterial interfaces: Part I - small scale yielding, J. Appl. Mech. 55 (1988) 299-316, https://doi.org/10.1115/1.3173676.   DOI
32 Osher Stanley, James A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988) 12-49, https://doi.org/10.1016/0021-9991(88)90002-2.   DOI
33 M. Stolarska, D.L. Chopp, N. Moes, T. Belytschko, Modelling crack growth by level sets in the extended finite element method, Int. J. Numer. Methods Eng. 51 (2001) 943-960, https://doi.org/10.1002/nme.201.   DOI
34 N. Sukumar, D.L. Chopp, B. Moran, Extended finite element method and fast marching method for three-dimensional fatigue crack propagation, Eng. Fract. Mech. 70 (2003) 29-48, https://doi.org/10.1016/S0013-7944(02)00032-2.   DOI
35 T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Eng. 45 (1999) 601-620, https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5%3C601::AID-NME598%3E3.0.CO;2-S.   DOI
36 ASTM E1820-01, Standard Test Method for Measurement of Fracture Toughness, ASTM International, US, 2001. www.astm.org.
37 ASTM E399-17, Standard Test Method for :Linear-Elastic Plane Strain Fracture Toughness $KI_{C}$ of Metallic Materials, ASTM International, US, 2018. www.astm.org.
38 J. Wang, G.Z. Wang, F.Z. Xuan, S.T. Tu, Derivation of constraint-dependent J-R curves based on modified T-stress parameter and GTN model for a low alloy steel, Int. J. Fract. 183 (2013) 155-168, https://doi.org/10.1007/s10704-013-9884-6.   DOI
39 J. Xu, Z.L. Zhang, E. Ostby, B. Nyhus, D.B. Sun, Effects of crack depth and specimen size on ductile crack growth of SENT and SENB specimens for fracture mechanics evaluation of pipeline steels, Int. J. Press. Vessel. Pip. 86 (2009) 787-797, https://doi.org/10.1016/j.ijpvp.2009.12.004.   DOI
40 J. Yang, G.Z. Wang, F.Z. Xuan, S.T. Tu, Unified characterisation of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain, Fatigue Fract. Eng. M. 36 (2012) 504-514, https://doi.org/10.1111/ffe.12019.
41 J. Yang, G.Z. Wang, F.Z. Xuan, S.T. Tu, C.J. Liu, An experimental investigation of in-plane constraint effect on local fracture resistance of a dissimilar metal welded joint, Mater. Des. 53 (2014) 611-619, https://doi.org/10.1016/j.matdes.2013.07.058.   DOI