• Title/Summary/Keyword: Constraint Conditions

Search Result 377, Processing Time 0.032 seconds

The Influence of the constraint condition on the Roller-rig (주행시험대 구속조건에 따른 영향 분석)

  • Kim, Nam-Po;Park, Joon-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1074-1079
    • /
    • 2011
  • This paper describes the influence on the nonlinear critical speed results of a specific railway vehicle depending on various constraint conditions. In the roller-rig tests, proper constraints are inevitable to safely hold the test vehicles. Particularly, the test results using KRRI roller-rig are more sensitive to constraint conditions because it is a kind of semi-full car type. In this study, nonlinear critical speed of specific vehicle with regards to several constraint cases were predicted by computational analysis and these results were compared to find the suitable constraint conditions. And also the deviation of semi-full car model from actual full car model was investigated. According to the bifurcation analysis, the nonlinear critical speed are dependent with the constraint condition and car-body yaw motion should be free to achieve more accurate results. And the difference between semi-full and full car model was so small that KRRI's semi-full car model are valid as long as the stability is concerned.

  • PDF

Welded plate and T-stub tests and implications on structural behavior of moment frame connections

  • Dong, P.;Kilinski, T.
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.35-50
    • /
    • 2002
  • A series of tests on simple-welded plate specimens (SWPS) and T-stub tension specimens simulating some of the joint details in moment frame connections were conducted in this investigation. The effects of weld strength mismatch and weld metal toughness on structural behavior of these specimens were considered under both static and dynamic loading conditions. Finite element analyses were performed by taking into account typical weld residual stress distributions and weld metal strength mismatch conditions to facilitate the interpretation of the test results. The major findings are as follows: (a) Sufficient specimen size requirements are essential in simulating both load transfer and constraint conditions that are relevant to moment frame connections, (b) Weld residual stresses can significantly elevate stress triaxiality in addition to structural constraint effects, both of which can significantly reduce the plastic deformation capacity in moment frame connections, (c) Based on the test results, dynamic loading within a loading rate of 0.02 in/in/sec, as used in this study, premature brittle fractures were not seen, although a significant elevation of the yield strength can be clearly observed. However, brittle fracture features can be clearly identified in T-stub specimens in which severe constraint effects (stress triaxiality) are considered as the primary cause, (d) Based on both the test and FEA results, T-stub specimens provide a reasonable representation of the joint conditions in moment frame connections in simulating both complex load transfer mode and constraint conditions.

A Study on the Residual Stress Distribution of Pure Titanium Welding Material (순수티타늄 용접재의 잔류응력분포에 관한 연구)

  • 최병기;권택용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.70-75
    • /
    • 2002
  • It is generally applied constraint welding condition to structure manufacture in the industry field. But it is thinkable that the residual stress of the construction and specimens for experiment is different because not constraint welding but non-constraint welding are applied for experiment. To apply the constraint welding condition as the industry field and compare and evaluate the welding residual stress distribution, the TlG welding of the pure titanium was carried out under constraint and non-constraint welding conditions

  • PDF

Differences in the Control of Anticipation Timing Response by Spatio-temporal Constraints

  • Seok-Hwan LEE;Sangbum PARK
    • Journal of Sport and Applied Science
    • /
    • v.7 no.2
    • /
    • pp.39-51
    • /
    • 2023
  • Purpose: The purpose of this study was to investigate differences in the control process to satisfy spatial and temporal constraints imposed upon the anticipation timing response by analyzing the effect of spatio-temporal accuracy demands on eye movements, response accuracy, and the coupling of eye and hand movements. Research design, data, and methodology: 12 right-handed male subjects participated in the experiment and performed anticipation timing responses toward a stimulus moving at three velocities (0.53m/s, 0.66m/s, 0.88m/s) in two task constraint conditions (temporal constraint, spatial constraint). During the response, response accuracy and eye movement patterns were measured from which timing and radial errors, the latency of saccade, fixation duration of the point of gaze (POG), distance between the POG and stimulus, and spatio-temporal coupling of the POG and hand were calculated. Results: The timing and radial errors increased with increasing stimulus velocity, and the spatio-temporal constraints led to larger timing errors than the temporal constraints. The latency of saccade and the temporal coupling of eye and hand decreased with increasing stimulus velocity and were shorter and longer respectively in the spatio-temporal constraint condition than in the temporal constraint condition. The fixation duration of the POG also decreased with increasing stimulus velocity, but no difference was shown between task constraint conditions. The distance between the POG and stimulus increased with increasing stimulus velocity and was longer in the temporal constraint condition compared to the spatio-temporal constraint condition. The spatial coupling of eye and hand was larger with the velocity 0.88m/s than those in other velocity conditions. Conclusions: These results suggest that differences in eye movement patterns and spatio-temporal couplings of stimulus, eye and hand by task constraints are closely related with the accuracy of anticipation timing responses, and the spatial constraints imposed may decrease the temporal accuracy of response by increasing the complexity of perception-action coupling.

Investigation into Crack-Tip Constraint of Curved Wide-Plate using Q-Stress (Q-응력을 이용한 휜 광폭평판 균열부 구속상태 변화 평가)

  • Lee, Hwee-Sueng;Huh, Nam-Su;Kim, Ki-Seok;Shim, Sang-Hoon;Cho, Woo-Yeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1441-1446
    • /
    • 2014
  • In the present paper, the effects of the thickness and width of a curved wide-plate, the crack length, and the strain hardening exponent on the crack-tip constraint of the curved wide-plate were investigated. To accomplish this, detailed three-dimensional elastic-plastic finite element (FE) analyses were performed considering various geometric and material variables. The material was characterized by the Ramberg-Osgood relationship, and the Q-stress was employed as a crack-tip constraint parameter. Based on the present FE results, the variations in the Q-stress of the curved wide-plate with the geometric variables and material properties were evaluated. This revealed that the effect of out-of-plane constraint conditions on the crack-tip constraint was closely related to the in-plane constraint conditions, and out-of-plane constraint conditions affected the crack-tip constraint more than in-plane constraint conditions.

Numerical method to impose constraint conditions in phase transformation (상변태의 구속 조건을 부가하기 위한 수치 방법)

  • Yang, Seung-Yong;Goo, Byeong-Choon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.706-709
    • /
    • 2004
  • A numerical method was developed that imposes constraint condition on the order parameters in martensitic phase transformation. In the method, an amplitude function having values of 1 or 0 was multiplied to transformation rates. The merit of the method is that the imposition of the constraint condition is more straightforward than a method with Lagrangian multiplier and easy to implement in the tangent modulus method. The developed method is applied to three-dimensional finite element analyses of single and poly crystalline shape memory alloys.

  • PDF

Evaluation of Environmental Performance of Energy Systems employing Market Allocation Model in Building Sector in Korea (시장분배모형을 이용한 건물부문 에너지 시스템 환경성능평가)

  • Park, Tong-So
    • KIEAE Journal
    • /
    • v.2 no.4
    • /
    • pp.65-72
    • /
    • 2002
  • In this study, the evaluation of environmental performance of the building energy system of domestic commercial sector was carried out. Based on the theory of linear programming model, we established an evaluation model satisfying object functions and constraint conditions. Employing the model, the evaluation of building energy system was performed under the consideration of cost and environmental constraint conditions. As an evaluation tool, MARKAL (MARKet Allocation) known as a market distribution model was employed. We analyzed scenarios of Case I (Base Scenarios) through Case IX established by the combination of the components of building energy system such as glazing, building skin, core, and heat source system. According to the results of the evaluation, highest contribution on the useful energy demand was obtained from the building energy system combined with solar heat source system, when the total amounts of $CO_2$ exhaust as an environmental constraint condition is assumed to be the level of 1995.

INVEXITY AS NECESSARY OPTIMALITY CONDITION IN NONSMOOTH PROGRAMS

  • Sach, Pham-Huu;Kim, Do-Sang;Lee, Gue-Myung
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.241-258
    • /
    • 2006
  • This paper gives conditions under which necessary optimality conditions in a locally Lipschitz program can be expressed as the invexity of the active constraint functions or the type I invexity of the objective function and the constraint functions on the feasible set of the program. The results are nonsmooth extensions of those of Hanson and Mond obtained earlier in differentiable case.

Underlay Cooperative Cognitive Networks with Imperfect Nakagami-m Fading Channel Information and Strict Transmit Power Constraint: Interference Statistics and Outage Probability Analysis

  • Ho-Van, Khuong;Sofotasios, Paschalis C.;Freear, Steven
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.10-17
    • /
    • 2014
  • This work investigates two important performance metrics of underlay cooperative cognitive radio (CR) networks: Interference cumulative distribution function of licensed users and outage probability of unlicensed users. These metrics are thoroughly analyzed in realistic operating conditions such as imperfect fading channel information and strict transmit power constraint, which satisfies interference power constraint and maximum transmit power constraint, over Nakagami-m fading channels. Novel closed-form expressions are derived and subsequently validated extensively through comparisons with respective results from computer simulations. The proposed expressions are rather long but straightforward to handle both analytically and numerically since they are expressed in terms of well known built-in functions. In addition, the offered results provide the following technical insights: i) Channel information imperfection degrades considerably the performance of both unlicensed network in terms of OP and licensed network in terms of interference levels; ii) underlay cooperative CR networks experience the outage saturation phenomenon; iii) the probability that the interference power constraint is satisfied is relatively low and depends significantly on the corresponding fading severity conditions as well as the channel estimation quality; iv) there exists a critical performance trade-off between unlicensed and licensed networks.

Gait analysis on the condition of arm swing in healthy young adults

  • Koo, Hyun-Min;Lee, Su-Young
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.3
    • /
    • pp.149-154
    • /
    • 2016
  • Objective: The arm swing is associated with gait ability in healthy young adults. The purpose of this study was to examine the effects of arm swing during gait in healthy young adults. Design: Cross-sectional study. Methods: Forty-five subjects without any orthopedic or neurological injuries participated in this study. All subjects performed all three conditions according to the arm swing type as follows: first procedure (condition 1), walking as usual without arm swing constraint; second procedure (condition 2), constraint of dominant arm swing walking as usual; third procedure (condition 3), constraint of both arm swing walking as usual. Gait parameters such as gait velocity, stride length, cadence, step time, single limb support, and double limb support were measured in all arm swing conditions performed randomly, with the mean value obtained from three measurements. A rest period of 5 minutes was given to prevent repetition of each condition and learning effect. All data was analyzed using repeated measures ANOVA to notice the changes between arm swing conditions. Results: Within walking conditions, significant difference of gait velocity, stride length, cadence, and double limb support was noticed (p<0.05), except step time and single limb support. Gait velocity and stride length were significant reduced, and in cadence and double limb support were increased (p<0.05). Condition 3 had the most significant decrease of gait ability compared with condition 1 (p<0.05). Conclusions: These finding suggested that constraint arm swing conditions reduced gait ability in healthy young adults. Also, these findings can be utilized as a reference to future studies that not only pelvic, knee and ankle, but also upper limb affect to gait ability.