• Title/Summary/Keyword: Constrained Control

Search Result 514, Processing Time 0.031 seconds

Hybrid dynamic control approach for constrained robot motion control with stiffness adaptability (제한 동작 로봇의 강성도 적응성을 갖는 하이브리드 동적 제어에 관한 연구)

  • Lim, Mee-Seub;Lim, Joon-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.705-713
    • /
    • 1999
  • In this paper, we propose a new motion and force control methodology for constrained robots as an approach of hybrid discrete-continuous dynamical system. The hybrid dynamic system modeling of robotic manipulation tasks with constraints is presented, and the hybrid system control architecture for unconstrained and constrained motion system with parametric uncertainties is synthesized. The optimal reference stiffness of robot manipulator is generated by the hybrid automata as a discrete state system and the control behavior of constrained system which has poor modeling information and time-varying constraint function is improved by the constrained robots as a continuous state system. The performance of the proposed constrained motion control system is successfully evaluated via experimental studies to the constraint tasks.

  • PDF

Input Constrained Receding Horizon Control Using Complex Polyhedral Invariant Region (복소형 다각형 불변영역을 이용한 입력제한 예측제어)

  • 이영일;방대인;윤태웅;김기용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.12
    • /
    • pp.991-997
    • /
    • 2002
  • The concept of feasible & invariant region plays an important role to derive closed loop stability and achie adequate performance of constrained receding horizon predictive control. In this paper, we define a complex polyhedral feasible & invariant set for all stabilizable input-constrained linear systems by using a complex transform and propose a one-norm based receding horizon control scheme using these invariant sets. In order to get a larger stabilizable set, a convex hull of invariant sets which are defined for different state feedback gains is used as a target invariant set of the constrained receding horizon control. The proposed constrained receding horizon control scheme is formulated so that it can be solved via linear programming.

A New Approach for Motion Control of Constrained Mechanical Systems: Using Udwadia-Kalaba′s Equations of Motion

  • Joongseon Joh
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.61-68
    • /
    • 2001
  • A new approach for motion control of constrained mechanical systems is proposed in this paper. The approach uses a new equations of motion which is proposed by Udwadia and Kalaba and named Udwadia-Kalaba's equations of motion in this paper. This paper reveals that the Udwadia-Kalaba's equations of motion is more adequate to model constrained mechanical systems rather than the famous Lagrange's equations of motion at least for control purpose. The proposed approach coverts most of constraints including holonomic and nonholonomic constraints. Comparison of simulation results of two systems which are well-known in the literature show the superiority of the proposed approach. Furthermore, a special constrained mechanical system which includes nonlinear generalized velocities in its constraint equations, which has been considered to be difficult to control, can be controlled easily. It shows the possibility of the proposed approach to being a general framework for motion control of constrained mechanical systems with various kinds of constraints.

  • PDF

Optimal actuator selection for output variance constrained control

  • 김재훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.565-569
    • /
    • 1993
  • In this paper, a specified number of actuators are selected from a given set of admissible actuators. The selected set of actuators is likely to use minimum control energy while required output variance constraints are guaranteed to be satisfied. The actuator selection procedure is an iterative algorithm composed of two parts; an output variance constrained control and an input variance constrained control algorithm. The idea behind this algorithm is that the solution to the first control problem provides the necessary weighting matrix in the objective function of the second optimization problem, and the sensitivity information from the second problem is utilized to delete one actuator. For variance constrained control problems, by considering a dual version of each control problem an efficient algorithm is provided, whose convergence properties turn out to be better than an existing algorithm. Numerical examples with a simple beam are given for both the input/output variance constrained control problem and the actuator selection problem.

  • PDF

Nonlinear Optimal Control of an Input-Constrained and Enclosed Thermal Processing System

  • Gwak, Kwan-Woong;Masada, Glenn Y.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.160-170
    • /
    • 2008
  • Temperature control of an enclosed thermal system which has many applications including Rapid Thermal Processing (RTP) of semiconductor wafers showed an input-constraint violation for nonlinear controllers due to inherent strong coupling between the elements [1]. In this paper, a constrained nonlinear optimal control design is developed, which accommodates input constraints using the linear algebraic equivalence of the nonlinear controllers, for the temperature control of an enclosed thermal process. First, it will be shown that design of nonlinear controllers is equivalent to solving a set of linear algebraic equations-the linear algebraic equivalence of nonlinear controllers (LAENC). Then an input-constrained nonlinear optimal controller is designed based on that LAENC using the constrained linear least squares method. Through numerical simulations, it is demonstrated that the proposed controller achieves the equivalent performances to the classical nonlinear controllers with less total energy consumption. Moreover, it generates the practical control solution, in other words, control solutions do not violate the input-constraints.

Control of Two-Link Manipulator Via Feedback Linearization and Constrained Model Based Predictive Control

  • Son, Won-Kee;Park, Jin-Young;Ryu, Hee-Seb;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.221-227
    • /
    • 2000
  • This paper combines the constrained model predictive control with the feedback linearization to solve a nonlinear system control problem with input constraints. The combined approach consists of two steps: Firstly, the nonlinear model is linearized by the feedback linearization. Secondly, based on the linearized model, the constrained model predictive controller is designed taking input constraints into consideration. The proposed controller is applied to two link robot system, and tracking performances of the controller are investigated via some simulations, where the comparisons are done for the cases of unconstrained, constrained input in feedback linearization.

  • PDF

A Study on End-effector Friction of Constrained Spatial Flexible Manipulator (구속 받는 3차원 유연 매니퓰레이터 선단의 마찰에 관한 연구)

  • Kim, Jin-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.449-454
    • /
    • 2010
  • The force control of a constrained flexible manipulators has been one of the major research topics. However, a little effort has been devoted for the relation between friction force and elastic deflection of end-effector for a constrained flexible manipulator. So, the aim of this paper is to clarify the friction mechanism of a constrained spatial multi-link flexible manipulator by changing the material and connected method of end-effector. In this study, a concise hybrid position/force control scheme is applied to the control of a flexible manipulator, and the experimental results for the constrained vertical motion and constrained horizontal motion is presented. Finally a comparison between these results are presented to show the reduction of vibration of link and friction force.

Vibration Suppression Control of Constrained Spatial Flexible Manipulators (구속받는 3차원 유연 매니퓨레이터의 진동억제 제어)

  • 김진수;우찌야마마사루
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.189-195
    • /
    • 2000
  • For free motions, vibration suppression of flexible manipulators has been one of the hottest research topics. However, for constrained motions, a little effort has been devoted for vibration suppression control. Using the dependency of elastic deflections of links on contact force under static conditions, vibrations for constrained planar two-link flexible manipulators have been suppressed successfully by controlling the contact force. However, for constrained spatial multi-link flexible manipulators, the vibrations cannot be suppressed by only controlling the contact force. So, the aim of this paper is to clarify the vibration mechanism of a constrained, multi-DOF, flexible manipulator and to devise the suppression method. We apply a concise hybrid position/force control scheme to control a flexible manipulator modeled by lumped-parameter modeling method. Finally, a comparison between simulation and experimental results is presented to show the performance of our method.

  • PDF

A Study on the Application of Constrained Bayes Estimation for Product Quality Control (Constrained 베이즈 추정방식의 제품 품질관리 활용방안에 관한 연구)

  • Kim, Tai-Kyoo;Kim, Myung Joon
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.1
    • /
    • pp.57-66
    • /
    • 2015
  • Purpose: The purpose of this study is to apply the constrained Bayesian estimation methodology for product quality control process and prove the effectiveness of the product management by comparing with the well-known Bayes estimator through data performance result. Methods: The Bayes and constrained Bayes estimators were produced based on the theoretical background and for confirming the effectiveness of suggested application, the deviation index was defined and calculated for the comparison. Results: The statistical analysis result shows that applying the suggested estimation methodology, that is, constrained Bayes estimator improves the effectiveness of the index with regard to reduce the error by matching the first two empirical moments. Conclusion: Considering the advanced Bayesian approaches such as constrained Bayes estimation for the product quality control process, the newly defined deviation index reduces the error for estimating the parameter histogram which is reflected both location and deviation parameters and furthermore various Bayesian perspective approaches seems to be meaningful for managing the product quality control process.

A study on the active noise control using generalized CLMS (일반화된 제한 최소자승법을 이용한 능동 소음제어에 관한 연구)

  • 나희승;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.52-57
    • /
    • 1993
  • Conventional active control algorithm for duct system is developed without considering problems of constrained structure. Therefore it destroys the constrained structures of the weights or parameters. A new LMS algorithm, which does keep the constraints, is proposed for systems with known constrained structure. It is based on error-back propagation. The stability analysis and simulation example are also included.

  • PDF