• Title/Summary/Keyword: Constitutive modeling

Search Result 251, Processing Time 0.021 seconds

Viscoelastic constitutive modeling of asphalt concrete with growing damage

  • Lee, Hyun-Jong;Kim, Y. Richard;Kim, Sun-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.225-240
    • /
    • 1999
  • This paper presents a mechanistic approach to uniaxial viscoelastic constitutive modeling of asphalt concrete that accounts for damage evolution under cyclic loading conditions. An elasticviscoelastic correspondence principle in terms of pseudo variables is applied to separately evaluate viscoelasticity and time-dependent damage growth in asphalt concrete. The time-dependent damage growth in asphalt concrete is modeled by using a damage parameter based on a generalization of microcrack growth law. Internal state variables that describe the hysteretic behavior of asphalt concrete are determined. A constitutive equation in terms of stress and pseudo strain is first established for controlled-strain mode and then transformed to a controlled-stress constitutive equation by simply replacing physical stress and pseudo strain with pseudo stress and physical strain. Tensile uniaxial fatigue tests are performed under the controlled-strain mode to determine model parameters. The constitutive equations in terms of pseudo strain and pseudo stress satisfactorily predict the constitutive behavior of asphalt concrete all the way up to failure under controlled-strain and -stress modes, respectively.

Evaluation of constitutive relations for concrete modeling based on an incremental theory of elastic strain-hardening plasticity

  • Kral, Petr;Hradil, Petr;Kala, Jiri
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.227-237
    • /
    • 2018
  • Today, the modeling of concrete as a material within finite element simulations is predominantly done through nonlinear material models of concrete. In current sophisticated computational systems, there are a number of complex concrete material models which are based on theory of plasticity, damage mechanics, linear or nonlinear fracture mechanics or combinations of those theories. These models often include very complex constitutive relations which are suitable for the modeling of practically any continuum mechanics tasks. However, the usability of these models is very often limited by their parameters, whose values must be defined for the proper realization of appropriate constitutive relations. Determination of the material parameter values is very complicated in most material models. This is mainly due to the non-physical nature of most parameters, and also the large number of them that are frequently involved. In such cases, the designer cannot make practical use of the models without having to employ the complex inverse parameter identification process. In continuum mechanics, however, there are also constitutive relations that require the definition of a relatively small number of parameters which are predominantly of a physical nature and which describe the behavior of concrete very well within a particular task. This paper presents an example of such constitutive relations which have the potential for implementation and application in finite element systems. Specifically, constitutive relations for modeling the plane stress state of concrete are presented and subsequently tested and evaluated in this paper. The relations are based on the incremental theory of elastic strain-hardening plasticity in which a non-associated flow rule is used. The calculation result for the case of concrete under uniaxial compression is compared with the experimental data for the purpose of the validation of the constitutive relations used.

True Stress-True Strain Curve Fitting Methodology for Finite Element Analysis (유한요소해석을 위한 재료의 진응력-진변형률 커브 피팅 방법론)

  • Kim, Y.J.;Gu, G.H.;Seo, M.H.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.194-199
    • /
    • 2022
  • In finite element method (FEM) simulations, constitutive models are widely used and developed to represent a wide range of true stress-strain curves using a small number of modeling parameters. Nevertheless, many studies has been conducted to find a suitable constitutive model and optimal modeling parameters to represent experimentally obtained true stress-strain curves. Therefore, in this study, a new constitutive modeling approach using the combined Swift and Voce model is suggested, and confirmed through comparisons of the experimental results with the FEM simulation results.

The Effective Modeling of Piezoelectric Actuator in Quasi-static Equilibrium Condition (준 평형 압전 구동기의 효과적 모델링 기법)

  • 박종규;문원규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.768-771
    • /
    • 2002
  • A method to derive the constitutive relations of a piezoelectric bender actuator is developed here. The constitutive relations are derived from the geometry, material properties of the actuator. The very complicated constitutive relations can be easily calculated by use of symbolic function in Mathematica. The developed program can calculate the constitutive relations for the unimorph bender made by attaching a short piezoelectric beam on a longer metal beam. The program can also calculate the constitutive relations of a piezoelectric bender with spring at its end.

  • PDF

Constitutive Equations for Three Dimensional Circular Braided Glass Fiber Reinforced Composites Using Cell Modeling Method (셀 방법을 이용한 3차원 원형 브레이드 유리 섬유 강화 복합 재료의 구성 방정식)

  • 이원오;정관수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.71-74
    • /
    • 2003
  • The cell modeling homogenization method to derive the constitutive equation considering the microstructures of the fiber reinforced composites has been previously developed for composites with simple microstructures such as 2D plane composites and 3D rectangular shaped composites. Here, the method has been further extended for 3D circular braided composites, utilizing B-spline curves to properly describe the more complex geometry of 3D braided composites. For verification purposes, the method has been applied for orthotropic elastic properties of the 3D circular braided glass fiber reinforced composite, in particular for the tensile property. Prepregs of the specimen have been fabricated using the 3D braiding machine through RTM (resin transfer molding) with epoxy as a matrix. Experimentally measured uniaxial tensile properties agreed well with predicted values obtained fer two volume fractions.

  • PDF

Nonlinear Dynamic Analysis of RC Frames Based on Constitutive Models of Constituent Materials (재료의 구성모델에 따른 철근콘크리트 골조의 비선형 동적거동 특성 차이에 관한 연구)

  • Heo, YeongAe;Kang, Thomas H.K.
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.1-8
    • /
    • 2013
  • Constitutive modeling of constituent materials is very important for reinforced concrete (RC) frames. Cyclic constitutive behavior of unconfined concrete, confined concrete and reinforcing steel should be well defined in fiber-based discretization of RC sections. This study performs nonlinear dynamic analyses of RC frame structures to investigate the sensitivity of seismic behavior of such frames to different constitutive models of constituent materials. The study specifically attempts to examine confinement effects in concrete modeling and degrading effects in steel modeling, which substantially affects the monotonic, cyclic and seismic responses of RC members and frames. Based on the system level analysis, it is shown that the response of non-ductile frames is less sensitive to confined concrete models while the modeling of reinforcing steel is quite influential to the inelastic response of both non-ductile and ductile frames.

Inelastic Constitutive Modeling for Viscoplastcity Using Neural Networks

  • Lee, Joon-Seong;Lee, Yang-Chang;Furukawa, Tomonari
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.251-256
    • /
    • 2005
  • Up to now, a number of models have been proposed and discussed to describe a wide range of inelastic behaviors of materials. The fetal problem of using such models is however the existence of model errors, and the problem remains inevitably as far as a material model is written explicitly. In this paper, the authors define the implicit constitutive model and propose an implicit viscoplastic constitutive model using neural networks. In their modeling, inelastic material behaviors are generalized in a state space representation and the state space form is constructed by a neural network using input output data sets. A technique to extract the input-output data from experimental data is also described. The proposed model was first generated from pseudo-experimental data created by one of the widely used constitutive models and was found to replace the model well. Then, having been tested with the actual experimental data, the proposed model resulted in a negligible amount of model errors indicating its superiority to all the existing explicit models in accuracy.

Evolution of post-peak localized strain field of steel under quasi-static uniaxial tension: Analytical study

  • Altai, Saif L.;Orton, Sarah L.;Chen, Zhen
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.435-449
    • /
    • 2022
  • Constitutive modeling that could reasonably predict and effectively evaluate the post-peak structural behavior while eliminating the mesh-dependency in numerical simulation remains to be developed for general engineering applications. Based on the previous work, a simple one-dimensional modeling procedure is proposed to predict and evaluate the post-peak response, as characterized by the evolution of localized strain field, of a steel member to monotonically uniaxial tension. The proposed model extends the classic one-dimensional softening with localization model as introduced by (Schreyer and Chen 1986) to account for the localization length, and bifurcation and rupture points. The new findings of this research are as follows. Two types of strain-softening functions (bilinear and nonlinear) are proposed for comparison. The new failure criterion corresponding to the constitutive modeling is formulated based on the engineering strain inside the localization zone at rupture. Furthermore, a new mathematical expression is developed, based on the strain rate inside and outside the localization zone, to describe the displacement field at which bifurcation occurs. The model solutions are compared with the experimental data on four low-carbon cylindrical steel bars of different lengths. For engineering applications, the model solutions are also compared to the experimental data of a cylindrical steel bar system (three steel bars arranged in series). It is shown that the bilinear and nonlinear softening models can predict the energy dissipation in the post-peak regime with an average difference of only 4%.

Modeling of an elastomer constitutive relation

  • Sung, Dan-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.1018-1021
    • /
    • 1988
  • This study is concerned with modeling an elastomer constitutive relation by utilizing the truncated Volterra series. Actual experimental data from the Instron Tester are obtained for combined input, i.e. constant strain rate followed by a constant strain input. These data are then estimated for step inputs and utilized for the truncated Volterra series models. One second order and one third order truncated Volterra series models have been employed to estimated the force-displacement relation which is one of the prominent properities to characterize the viscoelastic material. The third order Volterra series model has better results, compared with those of the second order Volterra series model.

  • PDF