DOI QR코드

DOI QR Code

Nonlinear Dynamic Analysis of RC Frames Based on Constitutive Models of Constituent Materials

재료의 구성모델에 따른 철근콘크리트 골조의 비선형 동적거동 특성 차이에 관한 연구

  • Received : 2013.04.29
  • Accepted : 2013.05.16
  • Published : 2013.07.30

Abstract

Constitutive modeling of constituent materials is very important for reinforced concrete (RC) frames. Cyclic constitutive behavior of unconfined concrete, confined concrete and reinforcing steel should be well defined in fiber-based discretization of RC sections. This study performs nonlinear dynamic analyses of RC frame structures to investigate the sensitivity of seismic behavior of such frames to different constitutive models of constituent materials. The study specifically attempts to examine confinement effects in concrete modeling and degrading effects in steel modeling, which substantially affects the monotonic, cyclic and seismic responses of RC members and frames. Based on the system level analysis, it is shown that the response of non-ductile frames is less sensitive to confined concrete models while the modeling of reinforcing steel is quite influential to the inelastic response of both non-ductile and ductile frames.

철근콘크리트 구성요소에 대한 비탄성 거동 모델 개발은 철근콘크리트 구조물에 대한 성능기반 내진평가의 정밀도 향상에 있어 매우 중요한 요소로 본 연구에서는 지진과 같은 불규칙 반복 하중에 대한 철근콘크리트 구조물의 비선형 동적응답을 예측함에 있어 콘크리트 구성모델의 특성에 따른 민감도를 고찰하고자 하였다. 해석결과에 따르면 구속된 코어 콘크리트 모델과 일반 콘크리트의 구성모델은 동적응답에 큰 영향을 끼치지 않았으나 철근의 경우에 층간변위와 관련하여 구성모델에 따른 동적거동은 매우 민감하게 응답하는 것으로 나타났으며, 몇 개 층에서의 층간변위는 그 차이가 철근 구성모델 선택에 따라 2배 이상 차이 나는 것으로 나타났다. 따라서 Non-ductile과 Ductile 골조 공히 비선형 동적해석을 수행하는데 있어 정밀한 철근 구성모델의 선택은 매우 중요한 것으로 사료된다.

Keywords

References

  1. Chang, G. and Mander, J., "Seismic Energy Based Fatigue Damage Analysis of Bridge Columns: Part I - Evaluation of Seismic Capacity", NCEER Technical Report 94-0006, Buffalo, New York, 1994, p.240.
  2. Hognestad, E., "A Study of Combined Bending and Axial Load in Reinforced Concrete Members", Bulletin No.399, Engineering Experiment Station, University of Illinois, Urbana- Champaign, 1951, p.128.
  3. Kang, T. H.-K. and Rha, C.-S., "Generalized Analysis of RC and PT Flat Plates Using Limit State Model", Journal of Korea Concrete Institute, Vol. 21, No. 5, 2009, pp.599-609 (in Korean). https://doi.org/10.4334/JKCI.2009.21.5.599
  4. Kunnath, S. K., Heo, Y. A. and Mohle, J. F., "Nonlinear Uniaxial Material Model for Reinforcing Steel Bars", Journal of Structural Engineering, ASCE, Vol. 135, No. 4, 2009, pp.335-343. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:4(335)
  5. Lee, L.-H., Han, S.-W. and Oh, Y.-H., "Determination of Ductility Factor Considering Different Hysteretic Models", Earthquake Engineering and Structural Dynamics, Vol. 28, No. 9, 1999, pp.957-977. https://doi.org/10.1002/(SICI)1096-9845(199909)28:9<957::AID-EQE849>3.0.CO;2-K
  6. Mander, J. B., Priestley, M. J. N. and Park, R., "Theoretical Stress Strain Model for Confined Concrete", Journal of Structural Engineering, ASCE, Vol. 114, No. 8, 1988, pp.1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  7. Menegotto, M. and Pinto, P., "Method of Analysis of Cyclically Loaded RC Plane Frames Including Changes in Geometry and Non-Elastic Behavior of Elements Under Normal Force and Bending", Preliminary Report, IABSE, Zurich, Vol. 13, 1973, pp.15-22.
  8. OpenSEES (Open System for Earthquake Engineering Simulation), http://opensees.berkeley.edu, 2012.
  9. Riddell, R., Garcia, J. E. and Garces, "Inelastic Deformation Response of SDOF Systems Subjected to Earthquakes", Earthquake Engineering and Structural Dynamics, Vol. 31, No. 3, 2002, pp.515-538. https://doi.org/10.1002/eqe.142
  10. Yang, J.-M., Lee, J.-H., Choi, S.-W. and Park, H.-S., "An Analytical Study on the Management of Historical Displacement Data", Proceedings of Korea Institute for Structural Maintenance and Inspection, Vol. 17, No. 1, 2013, pp.156-158 (in Korean).