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Dan Keun Sung

Korea Institute of Technology
400 Kusung-dong, Dacjeon, 302-338, KOREA

Abstract

This study is concerned with modeling an elastomer
constitutive relation by utilizing the truncated Volterra series.
Actual experimental data from the Instron Tester are ob-
tained for combined inputs, i.e. constant strain rate followed
by a constant strain input. These data are then estimated for
step inputs and utilized for the truncated Volterra series
models. One second order and one third order truncated
Volterra series models have been employed to estimated the
force-displacement relation which is one of the prominent
properities to characterize the viscoelastic material. The third
order Volterra series model has better results, compared with
those of the second order Volterra series model.

1. Introduction

Since Vito Volterra[1] introduced an infinite function-
al series around 1910, which is now referred to as the Volter-
ra series, to represent functionals which are analytic, the Vol-
terra series has been applied in the wide range of
nonlinear/bilinear systems such as, communications(2], cir-
cuits{3,4,5,6], viscoelastic material[7,8], and identification[9].

The input-output relations for nonlinear analytic sys-
tems can be explicitly represented by the Volterra series and
they can be characterized by the Volterra kernels. If the sys-
tem is not strongly nonlinear, the nonlinear system can be
approximated by the truncated Volterra series. This study is
concerned with modeling an elastomer constitutive relation
by utilizing the truncated Volterra series. In section 2, stress
relaxation phenomena are represented by the one-
dimensional Volterra series model. In section 3, the force-
displacement relations are modeled by both one second ord-
er truncated Volterra series model and one third order trun-
cated Volterra series model, and they are analyzed for the
step inputs,

2. Representation of an Elastomer Constitutive Relation

Consider an jsotropic, homogeneous, and nonaging

elastomer material under isothermal conditions. The linear
constitutive equation for the material can be written as [10}
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where the function G,(¢ -t)) is called the stress relaxation
function and €(¢) is the strain history. The principle of
superposition is valid in this linear model.

The general constitutive equation for nonlinear viscoe-
lastic material is originally proposed by Green and Rivlin{11].
For the case of one-dimensional deformation the constitutive
equation is given as [10)
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where the integrating functions G (r—1,),G (1~ 1,0~ t5) and
Gy{t—1,1—15,0—14) are called the stress relaxation functions.
This is a Volterra series representation between the stress and
the strain rate. If there exits only one stress relaxation func-
tion G, , then the material exhibits linear behavior. Thus,
the above representation may be a general model of non-
linear viscoelastic behavior.

3. Modeling and Analysis of the Elastomer

Constitutive Relation

We now consider an estimation of stress relaxation
function due to the step inputs by using the experimental
data from the Instron Tester on the UPJOHN'S Urethane
Elastomer sample. Suppose that we apply a combined input,
i.e. constant strain rate followed by a constant strain input
shown in Fig. 1. The basic assumption is that the estimated
stress, o(t), due to a stress applied stepwise at zero time
converge to the response due to a constant strain rate and
constant strain input for (> q¢° where q is constant[12,13].

Since experimental data from the Instron Tester are
obtained in terms of force-displacement, we use the force-
displacement relation instead of stress-strain. Eqn(2) can be
rewritten as
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where all initial times are assumed to be 0(zero) and I,/
and [, are Volterra kernels characterizing the intput-output
relation.

We use log f(t)-log t plot in order to fit the estimated
f(t) to displacement applied stepwise at zero time, since it is
easy to figure out the trend of curve [12,13). One log f(t)-log
t plot is shown in Fig. 2. From this plot, we can obtain the
estimated relation.
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The above equation is rewritten as

f
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where A, and h, are the first- and second-order Volterra ker-
nels, respectively. Suppose that we have two input-output

sets (force-displacement), f(£}—xi(4)

Let

x (1)=au(r)

x(t)=azu(r),

and f2(1)=x,(1)

N
(8)

where wu(t) is a step function. Substituting x,(¢) and x,(¢)
into eqn(6), and solving two algebraic equations for A (1)

and h,(¢,t), we can obtain two kernels

hy(i)= adf 2(1)=affa(1)
BT ajay(ar-ay)
afa(t)—asf (1)

halt.1)= ajaz(a—ay)
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Eight indentation test inputs for the urethane elasto-

mer sample with a 0.9525¢m
Fig. 3 .

40

“
~

o
.
[T

LR

24 0.

N
T T!
- :"‘
K\

16
~

0.

PENETRATION (CH)

6;08

.00

radius penetrator are shown in

v T T T
40.00 80.00 120.00 1860.00

TIME (SEC)

Fig.3 Indentation Test Inputs
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we can estimate the corresponding force outputs due

to assumed stepwise inputs as explained earlier. For the
second order truncated Volterra series form, we use two data
sets, i.e. f1(t) and f4(t), and estimate hy(1) and ho(s,t). In
order to verify these two kernels, we apply two step inputs,
x(4) and xg(r) shown in Fig. 3, and estimated outputs, fat)
and fg(t) . These estimated outputs calculated using the ker-
nels k(1) and hy(t,¢), and the corresponding kernels are
shown in Fig.4 and Fig.5, respectively. The maximum esror

We now consider the second-order truncated Volterra
series form.

here is about 9.5%.
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Fig. 5 Estimated Volterra Kernels

We now extend the previous model to the third order
truncated Volterra series model.
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Let

x{t)=au(t) 12)
xa(t)y=ayu(t) (13)
xy(t)=ayu(r) (14)

and the corresponding force responses be f,(¢),f (1) , and
f (1) , respectively. Then, substituting x,(1),x5(f) and x,(¢)
into eqn{11), and solving three algebraic equations for three
kernels, we obtain

R(=1f (W afai-adal)-al(fo)ai-f1(t)ad)

+af (fa(t)a-fi(1)ad))idet (15)
hat,0)=1a(fo)ad—aif y(1)=f (1) (azai~ajay)
+al(ayf s(1)—asf4(1)))/det (16)
Ay(t,e0)=1ay(aff s -adf ())~af (aof 3(1)~aaf 1))
+f (1) (azaf-afaz))/det, amn

where

det=a,ajas(a0?-afay~a,af+aaf+afas-alay).

For the third order truncated Volterra series form, we
need three input-output data sets to estimate /i;(2),h,(s,1)
and  h4(r,¢,t). We assume that three data sets are
Fa(0)=xy(1).f3(1)=x5(2), and f5(¢)~x5(r) . We now want to
estimate fo(1),fs(t) and fg(¢) due to step inputs,
xo(t),x6(),x5(t) and xg(¢) ,respectively. Compared with the
results for the second order truncated Volterra series model,
the estimated outputs have better results as expected. The
estimated outputs and kernels are shown in Fig.6 and Fig.7,
respectively. the maximum error here is about 6.4%. The
third order Volterra series model has better results, compared
with those of the second order Volterra series model.

4, Conclusion

The input-output refations for nonlinear system can be
explicity represented by the Volterra series and they can be
characterized by the volterra kernels. If the system is not
strongly nonlinear, the nonlinear solution can be approxi-
mated by the truncated Volterra series solution with only a
few low order terms. The second order and third order
truncated Volterra series models have been employed to esti-
mate the force-displacement relation which is one of the
prominent properites to characterize the viscoelastic
material. Actual experimental data from the Instron Tester
are obtained for combined inputs, i.e. constant strain rate fol-
lowed by a constant strain input. These data are then
estimated for step inputs and utilized for the truncated Vol-
terra series models. The third order Volterra series model has
better results, compared with those of the second order Vol-
terra series model.
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