• Title/Summary/Keyword: Constitutive Model

Search Result 1,185, Processing Time 0.02 seconds

Formulation for the Parameter Identification of Inelastic Constitutive Equations

  • Lee, Joon-Seong;Bae, Byeong-Gyu;Hurukawa, Tomonari
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.627-633
    • /
    • 2010
  • This paper presents a method for identifying the parameter set of inelastic constitutive equations, which is based on an Evolutionary Algorithm. The advantage of the method is that appropriate parameters can be identified even when the measured data are subject to considerable errors and the model equations are inaccurate. The design of experiments suited for the parameter identification of a material model by Chaboche under the uniaxial loading and stationary temperature conditions was first considered. Then the parameter set of the model was identified by the proposed method from a set of experimental data. In comparison to those by other methods, the resultant stress-strain curves by the proposed method correlated better to the actual material behaviors.

Seismic Performance Analysis of RC Subway Station Structures (철근콘크리트 지하철 정거장 구조물의 내진 성능 해석)

  • 남상혁;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.123-128
    • /
    • 2002
  • In this paper, an averaged constitutive model of concrete and reinforcing bars for RC structure and path-dependent Ohsaki's model for soil are applied, and an elasto-plastic interface model having thickness is preposed for seismic analysis of underground RC subway station structure. A finite element analysis technique is developed by applying aforementioned constitutive equations and verified through seismic analysis of underground RC subway station. Then, failure mechanisms of the RC subway station structure under seismic action are numerically derived. Then, failure modes and damage levels of the station are also analytically evaluated for the cases of several designs of the underground RC station.

  • PDF

Examples of One-Dimensional Dissipative Instabilities in Simple Shear Flow as Predicted by Differential Constitutive Equations (단순전단유동에서 미분 구성방정식의 일차원적 불안정거동예)

  • 권영돈
    • The Korean Journal of Rheology
    • /
    • v.7 no.3
    • /
    • pp.192-202
    • /
    • 1995
  • 이연구에서는 유변학 구성방정식이 나타내는 일차원 불안정성의 몇가지 예를 보였 다. 안정성 해석을 위하여 맥스웰형 미분구성방정식 Giesekus, Leonov, Larson 모델을 선택 하였다. 나타난 불안정성은 단순전단유동에서의 정상유동곡석이 무제한적 단수증가성을 위 배할 때 발생한다. 단순전단유동에 부과된 섭동하에서 Giesekus와 Larson 모델이 일정영역 의 무델계수와 전단율속도값에서 불안정 거동은 관성력을 고려하지 않은 경우에도 발생함이 증명되었다. 끝으로 이러한 불안정 거동을 개선하는 몇가지 방법을 Leonv와 Giesekus 모델 에 대하여 제시하였다.

  • PDF

Anisotropic Constitutive Model at Large Viscoplastic Deformations (탄소성 대변형에 관한 비등방 구성방정식)

  • Cho, Han-Wook
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.178-184
    • /
    • 1995
  • A new combined isotropic/kinematic and orthotropic hardening viscoplastic model is proposed which can account for not only differential orientations but also preferred orientations of grains in n metal at finite plastic deformations with an introduction of multiple spin (rate of rotation) concept within the general framework of the model, the effects of anisotropy and constitutive spins will be discussed in conjunction with a closed-form solution for simple shear in n rigid-plastic material, which will be used to simulate experimental data of Montheillet, et al. (1984) for fixed-end tortion tests at finite plastic deformations.

  • PDF

Modeling Constitutive Behavior of Mg Alloy Sheets for the Prediction of Sheet Springback (마그네슘 합금 판재의 구성식 개발: 스프링백에의 응용)

  • Lee, M.G.;Kim, S.J.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.67-69
    • /
    • 2007
  • Unusual mechanical constitutive behavior of magnesium alloy sheets has been implemented into the finite element program ABAQUS via user material subroutine. For the verification purpose, the springback of AZ31B magnesium alloy sheet was measured using the unconstrained cylindrical bending test of Numisheet'2002. In addition to the developed constitutive models, the other two models based on isotropic constitutive equations with tensile and compressive properties were also considered. Preliminary comparisons have been made between simulated results by the finite element analysis and corresponding experiments and the newly proposed model showed enhanced prediction capability in springback prediction.

  • PDF

Winkler spring behavior in FE analyses of dowel action in statically loaded RC cracks

  • Figueira, Diogo;Sousa, Carlos;Neves, Afonso Serra
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.593-605
    • /
    • 2018
  • A nonlinear finite element modeling approach is developed to assess the behavior of a dowel bar embedded on a single concrete block substrate, subjected to monotonic loading. In this approach, a discrete representation of the steel reinforcing bar is considered, using beam finite elements with nonlinear material behavior. The bar is connected to the concrete embedment through nonlinear Winkler spring elements. This modeling approach can only be used if a new constitutive model is developed for the spring elements, to simulate the deformability and strength of the concrete substrate. To define this constitutive model, an extensive literature review was conducted, as well as 3 experimental tests, in order to select the experimental data which can be used in the calibration of the model. Based on this data, an empirical model was established to predict the global dowel response, for a wide range of bar diameters and concrete strengths. This empirical model provided the information needed for calibration of the nonlinear Winkler spring model, valid for dowel displacements up to 4 mm. This new constitutive model is composed by 5 stages, in order to reproduce the concrete substrate response.

Elastic-Damage Constitutive Model for Nonlinear Tensile Behavior of Polymeric Foam (폴리머 폼의 비선형 인장거동을 모사하기 위한 기공이 고려된 손상 탄성 구성방정식)

  • Kwon, Sun-Beom;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.4
    • /
    • pp.191-197
    • /
    • 2018
  • This paper details the development of an isotropic elastic-damage constitutive model for polymeric foam based on irreversible thermodynamics to consider the growth and coalescence of voids. The constitutive equations describe the material behavior sustaining unilateral damage. To facilitate finite element analysis, the material properties for specific types of polymeric foams are applied to the developed model; the model is then implemented in ABAQUS as a user-defined material subroutine. To validate the developed damage model, the simulated results are compared to the results of a series of tensile tests on various polymeric foams. The proposed damage model can be utilized to further research on continuum damage mechanics and finite element analysis of polymeric foams in computational engineering.

Analysis of Damaged Material Response Using Unified Viscoplastic Constitutive Equations (통합형 점소성구성식을 이용한 손상재료거동해석)

  • Ha Sang Yul;Kim Ki Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.253-261
    • /
    • 2005
  • In decades, a substantial body of work on a unified viscoplastic model which considers the mechanism of plastic deformation and creep deformation has developed. The systematic scheme for numerical analysis of unified model is necessary because the dominant failure mechanism is the defect growth and coalescence in materials. In the present study, the unified viscoplastic model for materials with defects suggested by Suquet and Michel was employed for numerical analysis. The constitutive equations are integrated based on the generalized mid-point rule and implemented into a finite element program (ABAQUS) by means of user-defined subroutine (UMAT). To evaluate the validity of the developed UMAT code and the assessment of the adopted viscoplastic model, the results obtained from the UMAT code was compared with the numerical reference solution and experimental data. The unit cell analysis also has been investigated to study the effect of strain rate, temperature, stress triaxiality and initial defect volume fraction on the growth and coalescence of the defect.

A simple and efficient 1-D macroscopic model for shape memory alloys considering ferro-elasticity effect

  • Damanpack, A.R.;Bodaghi, M.;Liao, W.H.;Aghdam, M.M.;Shakeri, M.
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.641-665
    • /
    • 2015
  • In this paper, a simple and efficient phenomenological macroscopic one-dimensional model is proposed which is able to simulate main features of shape memory alloys (SMAs) particularly ferro-elasticity effect. The constitutive model is developed within the framework of thermodynamics of irreversible processes to simulate the one-dimensional behavior of SMAs under uniaxial simple tension-compression as well as pure torsion+/- loadings. Various functions including linear, cosine and exponential functions are introduced in a unified framework for the martensite transformation kinetics and an analytical description of constitutive equations is presented. The presented model can be used to reproduce primary aspects of SMAs including transformation/orientation of martensite phase, shape memory effect, pseudo-elasticity and in particular ferro-elasticity. Experimental results available in the open literature for uniaxial tension, torsion and bending tests are simulated to validate the present SMA model in capturing the main mechanical characteristics. Due to simplicity and accuracy, it is expected the present SMA model will be instrumental toward an accurate analysis of SMA components in various engineering structures particularly when the ferro-elasticity is obvious.

Undrained Analysis of Soft Clays Using an Anisotropic Hardening Constitutive Model: II. Numerical Analysis (비등방경화 구성모델을 적용한 연약 지반의 비배수 거동 해석 : II. 수치해석)

  • 오세붕
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.131-142
    • /
    • 1999
  • The objective of this study is to perform finite element analyses using the anisotropic hardening constitutive model on the basis of the total stress concept. An anisotropic hardening constitutive model had been developed in a companion paper, and was then formulated by implicit stress integration and consistent tangent moduli. A nonlinear finite element analysis program was coded including the algorithm, and as a result, the nonlinear solution was accurately calculated and converged to be asymptotically quadratic. In the analysis of a test embankment it was found that the proposed model could predict the displacement of soils more reasonably than the analysis with von Mises type model. In addition the proposed model could predict accurately the actual behavior through the reanalysis of the problem by a reasonable evaluation of the strength parameter.

  • PDF