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ABSTRACT

A new combined isotropic/kinematic and orthotropic hardening viscoplastic model is proposed
which can account for not only differential orientations but also preferred orientations of
grains in a metal at finite plastic deformations with an introduction of multiple spin (rate of
rotation) concept. Within the general framework of the model, the effects of anisotropy and
constitutive spins will be discussed in conjunction with a closed-form solution for simple
shear in a rigid-plastic material, which will be used to simulate experimental data of
Montheillet, et al. (1984) for fixed-end tortion tests at finite plastic deformations.

1. INTRODUCTION

Initial random orientation of grains in a metal tends to acquire a directional property with
plastic deformations. Bauschinger effect, which is a macroscopic phenomenon of differential
orientations of grains with deformations in a metal, can he accounted for by kinematic
hardening model in terms of internal stress (back stress). However, as the plastic
deformations of metal become finite, preferred orientations of grains may occur, which cannot
be explained by kinematic hardening model. Although a plethora of theoretical analyses for
the behavior -of metals at finite inelastic deformations have been presented by many
researchers, these two phenomena have not been mentioned together in one constitutive model
and little has been done for comparison between theory and experiments. With the
motivation of Hill’s idea (1850) of material transition from initial isotropy to later anisotropy
with finite plastic deformations, a new combined isotropic/kinematic and orthotropic hardening
model is proposed and simple shear is analyzed to simulate the experimental data of
Montheillet, et al. (1984).

In contemorary theories of elastoplasticity at finite strain, the concept of the plastic spin (the
plastic rate of rotation), which is the difference of the spin of continuum from its underlying
substructure, seems to be necessary. Since Mandel (1971) and Kratochvil (1971) originally
proposed the concept for the plastic spin, the study for general finite deformation plasticity
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with the plastic spin has been carried out by Dafalias (1985, 1990), Loret (1983) and Dafalias
and Cho (1989) followed by many researchers. Based on the idea of Dafalias and Cho (1989),
this paper discusses the transition of a material from initial isotropy to orthotropy with finite
viscoplastic deformations within the framework of a new proposed hardening model with
multiple plastic spins.

Tensors will be denoted by boldface characters in direct notation. With the summation
convention over repeated indices, the following symbolic operations are implied: a0 = a0, a'0
= @03 ae0 = a;0n, with proper extensions to the tensors of different order. The prefix tr
indicates the trace, and a superposed dot denotes the material time derivative or rate,

2. KINEMATICS AND KINETICS IN VISCOPLASTICITY AT LARGE DEFORMATIONS

The introduction of the concept of intermediate (unstressed) configuration by Lee (1969) and
the director vectors by Mandel (1971) leads the kinematics in small elastic and finite plastic
deformations to be expressed as follows: '

D=D°+D° 40

W=0+W =0 + W (2)
where D, D° and D denote the total, elastic and plastic rate of deformations, respectively,
and W, © and W’ the total, substructural and plastic spins, respectively, in Eulerian
kinematics. The @. denotes a representative consitutive spin used in the rate equation of
evolution of internal variables. The W™ is the difference of W and ©. The material state
will be defined at the current configuration in terms of the Cauchy stress ¢ and a
representative collection a of structure variables. It is assumed that the a, which in fact
provides anisotropic properties via their variations (Onat, 1982), be elastically embedded in the
continuium. The corotational rates for 0 and a with respect to @ and 9., respectively, are
defined as

dg= 0-0 0+ 00 a= a-ea+ ad (3)

Based on Dafalias (1990), kinetics can be described as follows:

D°=L% g+ T4 (4)
D° = <> N, WP = <>Q" (5)
; = 9> Z, 6)

where L represents the elastic moduli, T is the thermal expansion tensor, 8 is the
temperature, and ¢ is non-negative scalar-valued overstress function, and N°, @ and a;

define the "direction” of DP, W® a, respectively.  The <> is the Macauley bracket.

Invariance requirements under superposed rigid body rotation render all tensor and scalar
valued constitutive functions of Egs. (4), (5) and (6) isotropic functions of their variables 0,0
and a.

3. NEW COMBINED HARDENING MODEL
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A viscoplastic formulation is proposed which can account for both isotropic/kinematic
hardening and orthotropic symmetries with the axes of orthotropy along the unit vectors ni.
Denoting by superposed ~ the tensor components in reference to the orthotropic ni-axes, and
by 6, s and @, the Cauchy stress, the deviatoric Cauchy stress and the deviatoric back stress
tensors, respectively, and introducing 0° = 0 - @, one can define the uantity
J = {A(0u- 00 + B( o'~ 0w’ + C( 0'n- o'n)’
+2D 0’5 + 2E 0’ + OF ¢t
= {(A+B+4C-2E) tr¥(ais") + (A+4B+C-2D) tr(ass”)

+ 2(-A+2B+2C-D-E+F) tr(ais”) tr(ass’)

+ 2(F-D) tr(ais™) + 2(F-E) tr(azs™) + (D+E-F) tr(sH)}”? )
where a=nmien;, i=1,2,3, (not summation), and A, B, C, D, E and F are the material
parameters. For the case of @ = 0, Eq. (7) produces the orthotropic hardening mode! of Hill
(1950), while for A=B=C=1 and D=E=F=3 this reduces to von Mises’' type Kkinematic hardening

with J= V3{tr(s-a)2}"? for an isotropic material.

A power law overstress function is assumed as follows:

o = [(J-VZK/V] )
D° = <¢> (a]/a0) ©)

where V and n are the material parameters, and k is the size of static yield surface. With
the introduction of equivalent plastic strain & and the rate 2” = [(2/3)D"D"1¥?, Egs. (8) and
(9) yield dynamic yield surface as:

VZk + VI(@/3) tr(a)/a 02 e

VZk + V' ()" =5 (10)

where V' is a new material parameter which incorporates V and tr(3]/3¢). Eq. (10) shows

J(o,a1,a2)

. b4
the dependence of ] on the strain rate & .

In summary, four important concepts of this model can be described as follows:
(1) k, size of yield surface portraying isotropic hardening

k = ko + R, ko- initial value of k, R: variable part (11a)
R=(MHCR & -CR H C, Cs material parameters (11b)
(ii) a, deviatoric back stress portraying kinematic hardening
2= a-o a+ an = QD - el £)a - ca (12a)
ha, ¢, cs, s material parameters
% =W - W% (12b)
W = <0>0% = <0>(1/2)p(a 3]/80 -3]/30 a) = (1/2)p(aD-Da) (12c)

(iii) A,B,C,D,E/F, material constants portraying distortional hardening
(iv) m;, orthotropic axes portraying directional hardening

;i = m- @n; = 0 13

@ =W - W% = x& + (1-x)(W - W")
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WP = <¢>[m(ai0-0a1) + M(aw-0az) + Mmlaiaz-a0a;)] (14)

where ©, is the substructural spin for n; 9% the Eulerian spin, W the material parameters, and
x is the scalar-valued transition coefficient depending on deformations.

4. APPLICATION TO SIMPLE SHEAR

The motion for simple shear in xi1-x2 plane is expressed by

x1 = Xi + (1) Xz

x2 = Xz

X3 = X3 (15)
where x; and X, i=1,2,3, are Cartesian coordinates of current and initial position of a material
point, respectively, and Y is the shear strain. All components with a superposed ~ will be
referred to the orthotropic axes mi. The velocity gradient components are

Diz = Dy = Wiz = -Wp = 9/2

Dj=W;=0 for other i, j combinations. 16)
Since this work is concerned with large plastic deformations, a rigid-plastic material response

will be for simplicity assumed, ie.:
D° = D. a7

4.1 Analysis of Simple Shear

With Egs. (7), (8) and (9) in ni-axes and the transformation of the rate of deformation
conponents from X;i to mi—axes, it is straightforward to obtain non-zero stress components as
follows:

( 0'u- 0w)/B = ~( - Tw)/C = G F tan(20/X = sgn( ysin20)]/R (18)
with X = AB + BC + CA
R = [X{B + C + 2X/(F tan®20)}]"?

Assuming that Gs = om = 0 and ap = ag = 0, the transformation of Eq. (18) frbm n; to

x; coordinate system yields

Loz _ entisinagy b1 B5C 4 (BEC_ X)eng)
L22298)  uisinap b1 BrC - (BEC_X)peng)
Op—ay: . .
Lop—ap) ‘2] @) = sgn(y) | sin2¢ | %[ B;C + Fta)rf22¢] (19)
with the system of differential equations of an and di, based on Eq. (12a), as
day 1
@y — N7z cant (1-pa)ay
d. X
;;2 = —san( y)% ey — (1—pay)ay +% ha
cr=c, (' + % (20)
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where = =-|V§-L for monotonic change of 7  For the particular case of cubic

orthotropic symmetries where A=B=C=a and F=b, E¢s. (19) become

_ (on—an) - (on—ay)
J
_ . 3a _ sin2¢
= sgn(ycos2¢)(=p= —1) [ 6a(3—ba+tan2‘2¢)] s
{0220 el ol 1+ (32 —Deos20 11 2 (a)

It is noted that where a=1 and b=3, Eqgs. (7) reduce to von Mises’ type kinematic hardening
criterion, ie. (01-d2)/J= sgn()/V6 for an isotropic material, independent of ¢. For the
variation of the parameters a and b, the followings are proposed:

a=(l1-a) exp (-ca | 7| ) + as

b = (1-bs) exp (v | 71 ) + be (22)
where as and bs are the saturated values of a and b with deformations, and ca and ¢y are the
material constants. The parameters of Eq. (14), which portray the transition from isotropy to
orthotropy, are proposed as:

x = expl-c | 71)

n= %(m—mma) (23
where ¢ is a material constant.

Finally, the dynamic yield surface of Eq. (7) reduces to

J2 = (Ba-3b)tr¥(ais”) + tr¥(ass”) + trlas”) tr(ass’)] + b tr(s™®) = 82 (24)

From Eq. (21), 6°n + 6" = 0, (25)
hence, one can obtain the following criterion, which is in fact the projection of the
intersection of the yield surface with the plane of Eq. (24), onto the 61 - ¢'12 plane, as
follows:
12 = [2b + (6a-2bcos2 ¢) 0"n” + [2b + (6a-2b)sin’2 ¢} 0"
+ (6a-2b)sind ¢ 0°110°12 = B° (26)

Note that for a=1 and b=3 Eq. (25) yields 0"1%+0" 2" = (0p-au)?+(012-a12)® = 8%/6 for isotropy.

4.2 Simulation of Experimental Data

Fixed-end tortional experiments of Montheillet, et al. (1984) for a-Fe were examined with the
parameters of Sec. 4.1 within the analysis of simple shear. Although the details are omitted
due to the limited space, Fig. 1 shows satisfactory simulation for strain rate effects on the
stresses and the phenomena of variation of axial stress 0z from negative to positive quantity
with deformations. The transition of the yield surface is clearly seen in Fig. 2, where the
path of the current stress point ¢ is explained with the transition of the yield surface. The
rotation or orientation of the surface can be discussed via n;i or ¢ of Eqs. (13), (14) and (23)
while the distortion is related with the parameters, a and b, of Egs. (21) and (22).
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Figure 1 (a) Experimental stress/strain curves for a-Fe. at 800 °C and different strain rates
after Montheillet, et al. (1984), and (b) Simulation of the stress/strain curves for
a-Fe
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Figure 2 Evolution of the dynamic yield surface and associated stress path

5. CONCLUSION

Residual stress and texture development are indispensable parts in the constitutive formulation
for finite inelastic deformations of metals. These two different phenomena were implemented
within the framework of the proposed hardening model, which could accomplish successful
simulation for the experimental data of simple shear by means of the distortional and
orientational features of yield surface.
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