• Title/Summary/Keyword: Constituent materials

Search Result 341, Processing Time 0.029 seconds

The effects of some additives on Methane Fermentation of Paper Mill Sludge treated with Alkali (알칼리 처리된 제지슬러지의 메탄발효에 미치는 몇몇 첨가제의 효과)

  • Choi, Jong-Woo;Lee, Kyu-Seung;Park, Seung-Heui
    • Korean Journal of Agricultural Science
    • /
    • v.22 no.2
    • /
    • pp.134-142
    • /
    • 1995
  • In order to elevate the efficiency of methane fermentation using the paper mill sludge, this experiment was conducted at two temperature conditions($35^{\circ}C$ and $60^{\circ}C$), and overlooked the addition effects of ethyl acetate as a substrate, nickel as a constituent of $F_430$, and sulfur as a cell growth factor and reductant. The cellulose of paper mill sludge was degraded to lower molecular materials by heating at $60^{\circ}C$ and NaOH treatment. Methane forming rates were 4.8% from NaOH-treated paper mill sludge added with ethyl acetate, 16.5% with sodium sulfide, 19.8% with nickel trioxide, 31.9% with mixture, and 9.6% with control at $60^{\circ}C$, but 0.21% with ethyl acetate, 2.14% with nickel acetate, 3.02% with nickel sulfate, 3.34% with nickel trioxide and 0.62% with control at $35^{\circ}C$. Therefore, methane yield was increased by approximately 10-fold at $60^{\circ}C$ than $35^{\circ}C$, and fermentation liquid added with mixture(nickel trioxide+ethyl acetate+sodium sulfide) at $60^{\circ}C$ showed the medium pH(7.0), higher COD value and lower nitrogen content.

  • PDF

A Study on Properties of Domestic Fly Ash and Utilization as an Insulation material (국산 Fly Ash의 특성 및 단열재로의 이용에 관한 연구)

  • 박금철;임태영
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.2
    • /
    • pp.135-146
    • /
    • 1983
  • This study is to investigate the properties of domestic fly ash for utilization as data in regard to fly ash which is by-product of domestic coal powder plants and the possibility of utilization as insulation material of domestic fly ash. Composition refractoriness size distribution density contents of hollow particles and crystalline phase were examined as the properties of domestic fly ash. As to the fired test pieces of fly ash by itself that varied contents of hollow particles with four kinds and of the fly ash-clay-saw dust system linear shrinkage bulk density app. porosity compressive strength thermal conductivity and structures were investigated for the possibility of utilization as an insulation material. The results are as follows : 1. The properties of the fly ash I) The constituent particle of the fly ash is spherical and it contains not a few hollow particles (floats by water 0.30-0.50 floats by $ZnCl_2$ aq.(SpG=1.71) 6.97-16.72%). ii) The chemical compositions of fly ash are $SiO_243.9-54.1%$ , $Al_2O_321.0-30.7%$ Ig loss is 7.4-24.1% and the principal of Ig loss is unburned carbon. iii) Fly ash was not suitable to use for mortar and concrete mixture because Ig. loss value is higher than 5% 2. Utilization as insulation material I) The test pieces of original fly ash floats by water floats by ZnCl2 aq(SpG=1.71) p, p t by ZnCl2 aq.(SpG=1.71) that were fired at 110$0^{\circ}C$ represented 0.11-0.18 kcal/mh$^{\circ}$ C as thermal conductivity value. ii) The test pieces which (76.5-85.5) wt% fly ash-(8.5, 9.5) wt% clay-(5.0-15.0) wt% saw dust system(68.0-72.0) wt% fly ash -(17.0-18.0)wt% clay-(10.0-15.0) wt% saw dust system and 59.5 wt% fly ash-25.5 wt% clay-15.0wt% saw dust system were fired at 110$0^{\circ}C$ the thermal conductivity was less than 0.1Kcal/mh$^{\circ}$ C. iii) In view of thermal conductivity and economic aspect insulation materials which added saw dust as blowing agent and clay as inorganic binder are better than that of fly ash as it is or separated hollow fly ash particles. iv) When the saw dust contents increased in the (59.5-90.0) wt% saw dust system and when amount of clay de-creased and firing temperature decreased under the condition of equal addition of saw dust app. porosity increased but bulk density compressive strength and thermal conductivity decreased.

  • PDF

Changes of Off-Odor Constituent and Parishin Derivatives of Fermentation of Gastrodia elata Rhizome by Lactic Acid Bacteria Strains (천마의 젖산발효에 따른 이취성분 및 Parishin 유도체의 변화)

  • Song, Young Eun;Lee, In Sok;Song, Eun Ju;Choi, Min Kyung;Han, Hyun Ah;Shin, So Hee;Choi, So Ra;Lee, Ki Kwon;Kim, Myung Kon;Park, Shin Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.5
    • /
    • pp.973-982
    • /
    • 2017
  • Gastrodia elata Blume often has been used for the treatment of headaches, convulsions, hypertension, and neurodegenerative diseases. The main active constituents are gastrodin, 4-hydroxybenzyl alcohol, vanillyl alcohol, 4-hydroxybenzylaldehyde and parishin A, B, C and E. Because Gastrodia elata has also unacceptable off-odor (swine barnyard-like) for food, there is a need to reduce it as well as allow for greater utilization as a functional food materials. In this study, a major off-odor producing substance of Gastrodia elata was fractionated by steam distillation and silica gel column chromatography. The substance was identified as p-cresol(4-methyl phenol) by GC-MS analysis and comparison of the retention time with that of an authentic compound in GC. The content of p-cresol in fermented Gastrodia elata was decreased. A fermented sample of Latobacillus sakei for 2 days was reduced to 54.7%, when compared with a unfermented sample. The five parishin derivatives in Gastrodia elata were identified by HPLC-MS analyses, and a comparison of HPLC retention times with those of authentic compounds. When compared with parishin derivatives of an unfermented Gastrodia elata, those of Gastrodia elata fermented by L. sakei, increased to 18.3% for 2 days. Increases of about 14.0~38.4% of the total phenolic compounds and 57.4~77.3% total flavonoids were found in fermented extracts, by 3 lactic acid bacteria strains. They were compared with $97.1{\pm}2.9{\mu}g/g$ and $40.9{\pm}2.0{\mu}g/g$ in the unfermented control, respectively. The extracts of Gastrodia elata Blume that were fermented by lactic acid bacteria had higher DPPH free radical scavenging activity and FRAP reducing power than the unfermented control.

Microdroplet Impact Dynamics at Very High Velocity on Face Masks for COVID-19 Protection (코로나-19 보호용 페이스 마스크에서의 액적 고속 충돌 거동)

  • Choi, Jaewon;Lee, Dongho;Eo, Jisu;Lee, Dong-Geun;Kang, Jeon-Woong;Ji, Inseo;Kim, Taeyung;Hong, Jiwoo
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.282-288
    • /
    • 2022
  • Facial masks have become indispensable in daily life to prevent infection and spread through respiratory droplets in the era of the corona pandemic. To understand how effective two different types of masks (i.e., KF-94 mask and dental mask) are in blocking respiratory droplets, i) we preferentially analyze wettability characteristics (e.g., contact angle and contact angle hysteresis) of filters consisting of each mask, and ii) subsequently observe the dynamic behaviors of microdroplets impacting at high velocities on the filter surfaces. Different wetting properties (i.e., hydrophobicity and hydrophilicity) are found to exhibit depending on the constituent materials and pore sizes of each filter. In addition, the pneumatic conditions for stably and uniformly dispensing microdroplets with a certain volume and impacting behaviors associated with the impacting velocity and filter type change are systematically explored. Three distinctive dynamics (i.e., no penetration, capture, and penetration) after droplet impacting are observed depending on the type of filter constituting the masks and droplet impact velocity. The present experimental results not only provide very useful information in designing of face masks for prevention of transmission of infectious respiratory diseases, but also are helpful for academic researches on droplet impacts on various porous surfaces.

A Literature Review on Studies of Bentonite Alteration by Cement-bentonite Interactions (시멘트-벤토나이트 상호작용에 의한 벤토나이트 변질 연구사례 분석)

  • Goo, Ja-Young;Kim, Jin-Seok;Kwon, Jang-Soon;Jo, Ho Young
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.219-229
    • /
    • 2022
  • Bentonite is being considered as a candidate for buffer material in geological disposal systems for high-level radioactive wastes. In this study, the effect of cement-bentonite interactions on bentonite alteration was investigated by reviewing the literature on studies of cement-bentonite interactions. The major bentonite alteration by hyperalkaline fluids produced by the interaction of cementitious materials with groundwater includes cation exchange, montmorillonite dissolution, secondary mineral precipitation, and illitization. When the hyperalkaline leachate from the reaction of the cementitious material with the groundwater comes into contact with bentonite, montmorillonite, the main component of bentonite, is dissolved and a small amount of secondary minerals such as zeolite, calcium silicate hydrate, and calcite is produced. When montmorillonite is continuously dissolved, the physicochemical properties of bentonite may change, which may ultimately causes changes in bentonite performance as a buffer material such as adsorption capacity, swelling capacity, and hydraulic conductivity. In addition, the bentonite alteration is affected by various factors such as temperature, reaction period, pressure, composition of pore water, bentonite constituent minerals, chemical composition of montmorillonite, and types of interlayer cations. This study can be used as basic information for the long-term stability verification study of the buffer material in the geological disposal system for high-level radioactive wastes.

Assessment of Bio-corrosive Effect and Determination of Controlling Targets among Microflora for Application of Multi-functional CFB on Cement Structure (다기능 탄산칼슘 형성세균의 시멘트 건축물 적용위한 부식능 평가 및 건축물 정주미생물 중 방제 대상 결정)

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.237-242
    • /
    • 2015
  • The use of calcite-forming bacteria (CFB) in crack remediation and durability improvements in construction materials creates a permanent and environmentally-friendly material. Therefore, research into this type of application is stimulating interdisciplinary studies between microbiology and architectural engineering. However, the mechanisms giving rise to these materials are dependent on calcite precipitation by the metabolism of the CFB, which raises concerns about possible hazards to cement-based construction due to microbial metabolic acid production. The aim of this study was to determine target microorganisms that possibly can have bio-corrosive effects on cement mortar and to assess multi-functional CFBs for their safe application to cement structures. The chalky test was first used to evaluate the $CaCO_3$ solubilization feature of construction sites by fungi, yeast, bacterial strains. Not all bacterial strains are able to solubilize $CaCO_3$, but C. sphaerospermum KNUC253 or P. prolifica KNUC263 showed $CaCO_3$ solubilization activity. Therefore, these two strains were identified as target microorganisms that require control in cement structures. The registered patented strains Bacillus aryabhatti KNUC205, Arthrobacter nicotianae KNUC2100, B. thuringiensis KNUC2103 and Stenotrophomonas maltophilia KNUC2106, reported as multifunctional CFB (fungal growth inhibition, crack remediation, and water permeability reduction of cement surfaces) and isolated from Dokdo or construction site were unable to solubilize $CaCO_3$. Notably, B. aryabhatti KNUC205 and A. nicotianae KNUC2100 could not hydrolyze cellulose or protein, which can be the major constituent macromolecules of internal materials for buildings. These results show that several reported multi-functional CFB can be applied to cement structures or diverse building environments without corrosive or bio-deteriorative risks.

Classifications by Materials and Physical Characteristics for Neolithic Pottery from Jungsandong Site in Yeongjong Island, Korea (영종도 중산동 신석기시대 토기의 재료학적 분류와 물리적 특성)

  • Kim, Ran Hee;Lee, Chan Hee;Shin, Sook Chung
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.4
    • /
    • pp.122-147
    • /
    • 2017
  • The Jungsandong sites are distributed across quartz and mica schist formations in Precambrian, and weathering layers include large amounts of non-plastic minerals such as mica, quartz, felspar, amphibole, chlorite and so on, which form the ground of the site. Neolithic pottery from Jungsandong exhibits various brown colors, and black core is developed along the inner part for some samples, and sharp comb-pattern and hand pressure marks can be observed. Their non-plastic particles have various composition, size distribution, sorting and roundness, so they are classified into four types by their characteristic mineral compositions. I-type (feldspar pottery) is including feldspar as the pain component or mica and quartz. II-type (mica pottery) is the combination of chloritized mica, talc, tremolite and diopside. III-type (talc pottery) is with a very small amount of quartz and mica. IV-type (asbestos pottery) is containing tremolite and a very small amount of talc. The inner and outer colors of Jungsandong pottery are somewhat heterogeneous. I-type pottery group shows differences in red and yellow degree, depending on the content of feldspar, and is similar to III-type pottery. II-type is similar to IV-type, because its red degree is somewhat high. The soil of the site is higher in red and yellow degree than pottery from it. The magnetic susceptibility has very wide range of 0.088 to 7.360(${\times}10^{-3}$ SI unit), but is differentiated according to minerals, main components in each type. The ranges of bulk density and absorption ratio of pottery seem to be 1.6 to 1.7 and 13.1 to 26.0%, respectively. Each type of pottery shows distinct section difference, as porosity and absorption ratio increase in the order as follows: I-type (organic matter fixed sample) < III-type and IV-type < I-type < II-type (including IV-type of IJP-15). The reason is that differences in physical property occur according to kind and size of non-plastic particles. Although Jungsandong pottery consists of mixtures of various materials, the site pottery has a geological condition on which all mineral composition of Jungsandong pottery can be provided. There, it is thought that raw materials can be supplied from weathered zone of quartz and mica schist, around the site. However, different constituent minerals, size and rock fragments are shown, suggesting the possibility that there can be more raw material pits. Thus, it is estimated that there may be difference in clay and weathering degree.

Statistical Optimization of Culture Conditions of Probiotic Lactobacillus brevis SBB07 for Enhanced Cell Growth (프로바이오틱 Lactobacillus brevis SBB07의 균체량 증가를 위한 배양 조건 최적화)

  • Jeong, Su-Ji;Yang, Hee-Jong;Ryu, Myeong Seon;Seo, Ji Won;Jeong, Seong-Yeop;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.577-586
    • /
    • 2018
  • We recently reported the potential probiotic properties of Lactobacillus brevis SBB07 isolated from blueberries. The present study investigates the effect of culture conditions such as temperature, initial pH, culture time, and medium constituent for industrial application. The ingredients of the medium to improve cell growth were selected by Plackett-Burman design (PBD) and central composite design (CCD) within a desirable range. The PBD was applied with 19 factors: seven carbon sources, six nitrogen sources, and six microelements. Protease peptone, corn steep powder (CSP), and yeast extract were found to be significant factors for the growth of SBB07. The CCD was then applied with three variables found from the PBD at five levels, and the optimum values were decided for the three variables: protease peptone, CSP, and yeast extract. In the case of the growth of SBB07, the proposed optimal media contained 2.0% protease peptone, 2.5% CSP, and 2.0% yeast extract, and the maximum dried-cell weight was predicted to be 2.93963 g/l. By the model verification, it was confirmed that the predicted and actual results are similar. Finally, the study investigated the effects of incubation temperature and initial pH at the optimized medium. It was confirmed that the dried-cell weight increased from $2.2933{\pm}0.0601g/l$ to $3.85{\pm}0.0265g/l$ when compared to the basal medium at $37^{\circ}C$ and initial pH 8.0. Establishing the optimal culture condition for SBB07 provides good potential for applications in probiotics and can serve as the foundation for the industrialization of materials.

In silico Analysis of Downstream Target Genes of Transcription Factors (생명정보학을 이용한 전사인자의 하위표적유전자 분석에 관한 연구)

  • Hwang, Sang-Joon;Chun, Sang-Young;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.2
    • /
    • pp.125-132
    • /
    • 2006
  • Objective: In the previous study, we complied the differentially expressed genes during early folliculogenesis. Objective of the present study was to identify downstream target genes of transcription factors (TFs) using bioinformatics for selecting the target TFs among the gene lists for further functional analysis. Materials & Methods: By using bioinformatics tools, constituent domains were identified from database searches using Gene Ontology, MGI, and Entrez Gene. Downstream target proteins/genes of each TF were identified from database searches using TF database ($TRANSFAC^{(R)}$ 6.0) and eukaryotic promoter database (EPD). Results: DNA binding and trans-activation domains of all TFs listed previously were identified, and the list of downstream target proteins/genes was obtained from searches of TF database and promoter database. Based on the known function of identified downstream genes and the domains, 3 (HNF4, PPARg, and TBX2) out of 26 TFs were selected for further functional analysis. The genes of wee1-like protein kinase and p21WAF1 (cdk inhibitor) were identified as potential downstream target genes of HNF4 and TBX2, respectively. PPARg, through protein-protein interaction with other protein partners, acts as a transcription regulator of genes of EGFR, p21WAF1, cycD1, p53, and VEGF. Among the selected 3 TFs, further study is in progress for HNF4 and TBX2, since wee1-like protein kinase and cdk inhibitor may involved in regulating maturation promoting factor (MPF) activity during early folliculogenesis. Conclusions: Approach used in the present study, in silico analysis of downstream target genes, was useful for analyzing list of TFs obtained from high-throughput cDNA microarray study. To verify its binding and functions of the selected TFs in early folliculogenesis, EMSA and further relevant characterizations are under investigation.

Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS) (레이저유도붕괴분광법을 활용한 토양의 정량분석)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Hwang, Seon-Woong;Jin, Yong-Ik;Park, Chan-Won;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.399-407
    • /
    • 2009
  • Laser induced breakdown spectroscopy(LIBS) is an simple analysis method for directly quantifying many kinds of soil micro-elements on site using a small size of laser without pre-treatment at any property of materials(solid, liquid and gas). The purpose of this study were to find an optimum condition of the LIBS measurement including wavelengths for quantifying soil elements, to relate spectral properties to the concentration of soil elements using LIBS as a simultaneous un-breakdown quantitative analysis technology, which can be applied for the safety assessment of agricultural products and precision agriculture, and to compare the results with a standardized chemical analysis method. Soil samples classified as fine-silty, mixed, thermic Typic Hapludalf(Memphis series) from grassland and uplands in Tennessee, USA were collected, crushed, and prepared for further analysis or LIBS measurement. The samples were measured using LIBS ranged from 200 to 600 nm(0.03 nm interval) with a Nd:YAG laser at 532 nm, with a beam energy of 25 mJ per pulse, a pulse width of 5 ns, and a repetition rate of 10 Hz. The optimum wavelength(${\lambda}nm$) of LIBS for estimating soil and plant elements were 308.2 nm for Al, 428.3 nm for Ca, 247.8 nm for T-C, 438.3 nm for Fe, 766.5 nm for K, 85.2 nm for Mg, 330.2 nm for Na, 213.6 nm for P, 180.7 nm for S, 288.2 nm for Si, and 351.9 nm for Ti, respectively. Coefficients of determination($r^2$) of calibration curve using standard reference soil samples for each element from LIBS measurement were ranged from 0.863 to 0.977. In comparison with ICP-AES(Inductively coupled plasma atomic emission spectroscopy) measurement, measurement error in terms of relative standard error were calculated. Silicon dioxide(SiO2) concentration estimated from two methods showed good agreement with -3.5% of relative standard error. The relative standard errors for the other elements were high. It implies that the prediction accuracy is low which might be caused by matrix effect such as particle size and constituent of soils. It is necessary to enhance the measurement and prediction accuracy of LIBS by improving pretreatment process, standard reference soil samples, and measurement method for a reliable quantification method.