DOI QR코드

DOI QR Code

A Literature Review on Studies of Bentonite Alteration by Cement-bentonite Interactions

시멘트-벤토나이트 상호작용에 의한 벤토나이트 변질 연구사례 분석

  • Goo, Ja-Young (Disposal Performance Demonstration Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Jin-Seok (Disposal Performance Demonstration Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kwon, Jang-Soon (Disposal Performance Demonstration Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Jo, Ho Young (Department of Earth and Environmental Sciences, Korea University)
  • 구자영 (한국원자력연구원 처분성능실증연구부) ;
  • 김진석 (한국원자력연구원 처분성능실증연구부) ;
  • 권장순 (한국원자력연구원 처분성능실증연구부) ;
  • 조호영 (고려대학교 지구환경과학과)
  • Received : 2022.04.13
  • Accepted : 2022.05.26
  • Published : 2022.06.28

Abstract

Bentonite is being considered as a candidate for buffer material in geological disposal systems for high-level radioactive wastes. In this study, the effect of cement-bentonite interactions on bentonite alteration was investigated by reviewing the literature on studies of cement-bentonite interactions. The major bentonite alteration by hyperalkaline fluids produced by the interaction of cementitious materials with groundwater includes cation exchange, montmorillonite dissolution, secondary mineral precipitation, and illitization. When the hyperalkaline leachate from the reaction of the cementitious material with the groundwater comes into contact with bentonite, montmorillonite, the main component of bentonite, is dissolved and a small amount of secondary minerals such as zeolite, calcium silicate hydrate, and calcite is produced. When montmorillonite is continuously dissolved, the physicochemical properties of bentonite may change, which may ultimately causes changes in bentonite performance as a buffer material such as adsorption capacity, swelling capacity, and hydraulic conductivity. In addition, the bentonite alteration is affected by various factors such as temperature, reaction period, pressure, composition of pore water, bentonite constituent minerals, chemical composition of montmorillonite, and types of interlayer cations. This study can be used as basic information for the long-term stability verification study of the buffer material in the geological disposal system for high-level radioactive wastes.

벤토나이트는 고준위방사성폐기물 심층처분 시스템 내 완충재 후보물질로서 고려되고 있다. 본 연구에서는 시멘트-벤토나이트의 상호작용 연구에 관한 문헌을 검토하여, 시멘트-벤토나이트 상호작용이 벤토나이트 변질 및 장기 안정성에 미치는 영향을 살펴보았다. 시멘트 물질과 지하수 상호작용에 의해 생성되는 강염기성 유체에 의한 벤토나이트의 주요 변질작용은 양이온 교환, 몬모릴로나이트 용해, 2차 광물 침전, 일라이트화 등이다. 처분장 인근 암반 단열을 통해 유입된 지하수와 처분장 건설에 사용된 시멘트 물질이 접촉하여 생성된 강염기성의 침출수가 벤토나이트와 반응하면 벤토나이트의 주구성광물인 몬모릴로나이트와 부구성광물의 용해가 발생하고, 제올라이트, 규산칼슘수화물, 방해석 등의 2차 광물의 침전이 일어난다. 몬모릴로나이트가 지속적으로 용해되면 벤토나이트의 물리화학적 특성이 변할 수 있고, 이는 궁극적으로 흡착능, 팽윤능, 투수성 등 완충재로서의 벤토나이트 성능 변화를 초래할 수 있다. 또한, 벤토나이트의 변질은 온도, 반응 기간, 압력, 공극수의 조성, 벤토나이트 구성광물, 몬모릴로나이트 화학조성, 층간 양이온 종류 등의 다양한 요인에 영향을 받는다. 본 연구는 고준위방사성폐기물 심층처분 시스템 내 완충재의 장기 안정성 검증 연구를 위한 기초 자료로서 활용될 수 있다.

Keywords

Acknowledgement

이 논문은 2022년도 과학기술정보통신부의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국연구재단의 지원을 받아 수행되었습니다(2021M2E1A1085202).

References

  1. Amram, K. and Ganor, J. (2005) The combined effect of pH and temperature on smectite dissolution rate under acidic conditions. Geochimica et Cosmochimica Acta, v.69, no.10, p.2535-2546. doi: 10.1016/j.gca.2004.10.001
  2. Bateman, K., Coombs, P., Noy, D.J., Pearce, J.M., Wetton, P., Haworth, A. and Linklater, C. (1999) Experimental simulation of the alkaline disturbed zone around a cementitious radioactive waste repository: numerical modelling and column experiments. Geological Society, London, Special Publications, v.157, no.1, p.183. doi: 10.1144/gsl.sp.1999.157.01.14
  3. Bauer, A. and Berger, G. (1998) Kaolinite and smectite dissolution rate in high molar KOH solutions at 35° and 80℃. Applied Geochemistry, v.13, no.7, p.905-916. doi: 10.1016/s0883-2927(98)00018-3
  4. Bauer, A., Fanghinel, T., Lanson, B., Ferrage, E., Emerich, K. and Velde, B. (2005) The fate of smectite before becoming illite in bentonite experiments.
  5. Bauer, A. and Velde, B. (1999) Smectite transformation in high molar KOH solutions. Clay Minerals, v.34, no.2, p.259-273. doi: 10.1180/000985599546226
  6. Boden, A. and Sievaenen, U. (2005). Low-pH injection grout for deep repositories. Summary report from a co-operation project between NUMO (Japan), Posiva (Finland) and SKB (Sweden) (No. SKB-R--05-40). Swedish Nuclear Fuel and Waste Management Co.
  7. Bouchet, A., Cassagnabere, A. and Parneix, J. (2004) Batch experiments: results on MX80: Ecoclay II: Effect of Cement on Clay Barrier Performance Phase II. Final Report (ANDRA).
  8. Cama, J., Ganor, J., Ayora, C. and Lasaga, C.A. (2000) Smectite dissolution kinetics at 80℃ and pH 8.8. Geochimica et Cosmochimica Acta, v.64, no.15, p.2701-2717. doi: 10.1016/s0016-7037(00)00378-1
  9. Charpentiera, D., Devineau, K., Mosser-Ruck, R., Cathelineau, M. and Villieras, F. (2006) Bentonite-iron interactions under alkaline condition: An experimental approach. Applied Clay Science, v.32, no.1-2, p.1-13. doi: 10.1016/j.clay.2006.01.006
  10. Chen, Y.G., Liu, L.N., Ye, W.M., Cui, Y.J. and Wu, D.B. (2019) Deterioration of swelling pressure of compacted Gaomiaozi bentonite induced by heat combined with hyperalkaline conditions. Soils and Foundations, v.59, no.6, p.2254-2264. doi: 10.1016/j.sandf.2019.12.008
  11. Chermak, J. (1992) Low temperature experimental investigation of the effect of high pH NaOH solutions on the opalinus Shale, Switzerland. Clays and Clay Minerals, v.40, p.650-650. doi: 10.1346/ccmn.1992.0400604
  12. Chermak, J. (1993) Low temperature experimental investigation of the effect of high pH KOH solutions on the opalinus shale, Switzerland. Clays and Clay Minerals, v.41, no.3, p.365-372. doi: 10.1346/ccmn.1993.0410313
  13. Codina, M., Cau-dit-Coumes, C., Le Bescop, P., Verdier, J. and Ollivier, J.P. (2008). Design and characterization of low-heat and low-alkalinity cements. Cement and Concrete Research, v.38(4), p.437-448. doi: 10.1016/j.cemconres.2007.12.002
  14. Coumes, C.C.D., Courtois, S., Nectoux, D., Leclercq, S. and Bourbon, X. (2006). Formulating a low-alkalinity, high-resistance and low-heat concrete for radioactive waste repositories. Cement and Concrete Research, v.36(12), p.2152-2163. doi: 10.1016/j.cemconres.2006.10.005
  15. Cuevas, J., Villa, R.V., Ramirez, S., Sanchez, L., Fernandez, R. and Leguey, S. (2006) The alkaline reaction of FEBEX bentonite: a contribution to the study of the performance of bentonite/concrete engineered barrier systems. Journal of Iberian Geology, v.32, no.2, p.151-174.
  16. Eberl, D., Velde, B. and McCormick, T. (1993) Synthesis of illite-smectite from smectite at earth surface temperatures and high pH. Clay Minerals, v.28, no.1, p.49-60. doi: 10.1180/claymin.1993.028.1.06
  17. Faucon, P., Adenot, F., Jacquinot, J., Petit, J., Cabrillac, R. and Jorda, M. (1998) Long-term behaviour of cement pastes used for nuclear waste disposal: review of physico-chemical mechanisms of water degradation. Cement and Concrete Research, v.28, no.6, p.847-857. doi: 10.1016/s0008-8846(98)00053-2
  18. Fernandez, A.M., Baeyens, B., Bradbury, M. and Rivas, P. (2004) Analysis of the porewater chemical composition of a Spanish compacted bentonite used in an engineered barrier. Physics and Chemistry of the Earth, Parts A/B/C, v.29, no.1, p.105-118. doi: 10.1016/j.pce.2003.12.001
  19. Fernandez, R., Cuevas, J., Sanchez, L., Villa, R.V. and Leguey, S. (2006) Reactivity of the cement-bentonite interface with alkaline solutions using transport cells. Applied Geochemistry, v.21, no.6, p.977-992. doi: 10.1016/j.apgeochem.2006.02.016
  20. Fernandez, R., Villa, R.V., Ruiz, A.I., Garcia, R. and Cuevas, J. (2013) Precipitation of chlorite-like structures during OPC porewater diffusion through compacted bentonite at 90℃. Applied Clay Science, v.83, p.357-367. doi: 10.1016/j.clay.2013.07.021
  21. Fernandez, R., Mader, U.K., Rodriguez, M., Villa, R.V. and Cuevas, J. (2009) Alteration of compacted bentonite by diffusion of highly alkaline solutions. European Journal of Mineralogy, v.21, no.4, p.725-735. doi: 10.1127/0935-1221/2009/0021-1947
  22. Fernandez, R., Rodriguez, M., Villa, R.V. and Cuevas, J. (2010) Geochemical constraints on the stability of zeolites and C-S-H in the high pH reaction of bentonite. Geochimica et Cosmochimica Acta, v.74, no.3, p.890-906. doi: 10.1016/j.gca.2009.10.042
  23. Fernandez, R., Ruiz, A.I. and Cuevas, J. (2014) The role of smectite composition on the hyperalkaline alteration of bentonite. Applied Clay Science, v.95, p.83-94. doi: 10.1016/j.clay.2014.03.015
  24. Gaucher, E.C. and Blanc, P. (2006) Cement/clay interactions-a review: experiments, natural analogues, and modeling. Waste Management, v.26, no.7, p.776-788. doi: 10.1016/j.wasman.2006.01.027
  25. Gaucher, E.C., Blanc, P., Matray, J.M. and Michau, N. (2004) Modeling diffusion of an alkaline plume in a clay barrier. Applied Geochemistry, v.19, no.10, p.1505-1515. doi: 10.1016/j.apgeochem.2004.03.007
  26. Golubev, S.V., Bauer, A. and Pokrovsky, O.S. (2006) Effect of pH and organic ligands on the kinetics of smectite dissolution at 25℃. Geochimica et Cosmochimica Acta, v.70, no.17, p.4436-4451. doi: 10.1016/j.gca.2006.06.1557
  27. Grim, R.E. (1968). Clay mineralogy 2 nd ed. McGraw-Hill Book Company.
  28. Huertas, F.J., Carretero, P., Delgado, J., Linares, J. and Samper, J. (2001) An experimental study on the ion-exchange behavior of the smectite of Cabo de Gata (Almeria, Spain): FEBEX bentonite. Journal of Colloid and Interface Science, v.239, no.2, p.409-416. doi: 10.1006/jcis.2001.7605
  29. IAEA (2011) Safety of Radioactive Waste Disposal Facilities, no. Specific Safety Requirements No. SSR-5, Vienna.
  30. Kamei, G., Mitsui, M.S., Futakuchi, K., Hashimoto, S. and Sakuramoto, Y. (2005) Kinetics of long-term illitization of montmorillonite-a natural analogue of thermal alteration of bentonite in the radioactive waste disposal system. Journal of Physics and Chemistry of Solids, v.66, no.2, p.612-614. doi: 10.1016/j.jpcs.2004.06.067
  31. Karlsson, F., Lindgren, M., Skagius, K., Wiborgh, M. and Engkvist, I. (1999) Evolution of geochemical conditions in SFL 3-5.
  32. Karnland, O., Olsson, S., Nilsson, U. and Sellin, P. (2007) Experimentally determined swelling pressures and geochemical interactions of compacted Wyoming bentonite with highly alkaline solutions. Physics and Chemistry of the Earth, Parts A/B/C, v.32, no.1-7, p.275-286. doi: 10.1016/j.pce.2006.01.012
  33. Kim, M., Lee, S., Cheon, E., Kim, M. and Yoon, S. (2021) Thermochemical changes on swelling pressure of compacted bentonite. Annals of Nuclear Energy, v.151, p.107882. doi: 10.1016/j.anucene.2020.107882
  34. Kohler, S.J., Bosbach, D. and Oelkers, E.H. (2005) Do clay mineral dissolution rates reach steady state? Geochimica et Cosmochimica Acta, v.69, no.8, p.1997-2006. doi: 10.1016/j.gca.2004.10.015
  35. Kuwahara, Y. (2006) In-situ AFM study of smectite dissolution under alkaline conditions at room temperature. American Mineralogist, v.91, no.7, p.1142-1149. doi: 10.2138/am.2006.2078
  36. Laine, H. and Karttunen, P. (2010) Long-term stability of bentonite. A literature review.
  37. Lee, J., Cho, D., Choi, H. and Choi, J. (2007) Concept of a Korean reference disposal system for spent fuels. Journal of Nuclear Science and Technology, v.44, no.12, p.1565-1573. doi: 10.1080/18811248.2007.9711407
  38. Lowson, R.T., Brown, P.L., Comarmond, M.C.J. and Rajaratnam, G. (2007) The kinetics of chlorite dissolution. Geochimica et Cosmochimica Acta, v.71, no.6, p.1431-1447. doi: 10.1016/j.gca.2006.12.008
  39. Montes-H,G., Fritz, B., Clement, A. and Michau, N. (2005) Modelling of geochemical reactions and experimental cation exchange in MX80 bentonite. Journal of Environmental Management, v.77, no.1, p.35-46. doi: 10.1016/j.jenvman.2005.03.003
  40. Mosser-Ruck, R. and Cathelineau, M. (2004) Experimental transformation of Na,Ca-smectite under basic conditions at 150 ℃. Applied Clay Science, v.26, no.1, p.259-273. doi: 10.1016/j.clay.2003.12.011
  41. Nakayama, S., Sakamoto, Y., Yamaguchi, T., Akai, M., Tanaka, T., Sato, T. and Iida, Y. (2004) Dissolution of montmorillonite in compacted bentonite by highly alkaline aqueous solutions and diffusivity of hydroxide ions. Applied Clay Science, v.27, no.1-2, p.53-65. doi: 10.1016/j.clay.2003.12.023
  42. Nasser, M., Onaizi, S.A., Hussein, I., Saad, M., Al-Marri, M. and Benamor, A. (2016) Intercalation of ionic liquids into bentonite: Swelling and rheological behaviors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v.507, p.141-151. doi: 10.1016/j.colsurfa.2016.08.006
  43. Oelkers, E.H. (2001) General kinetic description of multioxide silicate mineral and glass dissolution. Geochimica et Cosmochimica Acta, v.65, no.21, p.3703-3719. doi: 10.1016/s0016-7037(01)00710-4
  44. Pachana, K., Zuddas, P. and Censi, P. (2012) Influence of pH and temperature on the early stage of mica alteration. Applied geochemistry, v.27, no.9, p.1738-1744. doi: 10.1016/j.apgeochem.2012.02.009
  45. Pacovsky, J., Svoboda, J. and Zapletal, L. (2007) Saturation development in the bentonite barrier of the Mock-Up-CZ geotechnical experiment. Physics and Chemistry of the Earth, Parts A/B/C, v.32, no.8, p.767-779. doi: 10.1016/j.pce.2006.03.005
  46. Posiva (2010) Posiva Oy image gallery, https://www.posiva.fi/material/collections/20201009131250/7KyIuY9mD/monieste_ylatekstit.jpg.
  47. Pusch, R., Kasbohm, J. and Thao, H.T.M. (2010) Chemical stability of montmorillonite buffer clay under repository-like conditions-A synthesis of relevant experimental data. Applied Clay Science, v.47, no.1, p.113-119. doi: 10.1016/j.clay.2009.01.002
  48. Ramirez, S., Cuevas, J., Vigil, R., Martin, M., Leguey, S., Petit, S., Hidalgo, A. and Compere, F. (2002) Retention properties of a compacted Spanish bentonite in contact with a cement mortar.
  49. Ramirez, S., Vieillard, P., Bouchet, A., Cassagnabere, A., Meunier, A. and Jacquot, E. (2005) Alteration of the Callovo-Oxfordian clay from Meuse-Haute Marne underground laboratory (France) by alkaline solution. I. A XRD and CEC study. Applied Geochemistry, v.20, no.1, p.89-99. doi: 10.1016/j.apgeochem.2004.03.009
  50. Rozalen, M.L., Huertas, F.J., Brady, P.V., Cama, J., Garcia-Palma, S. and Linares, J. (2008) Experimental study of the effect of pH on the kinetics of montmorillonite dissolution at 25 ℃. Geochimica et Cosmochimica Acta, v.72, no.17, p.4224-4253. doi: 10.1016/j.gca.2008.05.065
  51. Sanchez, L., Cuevas, J., Ramirez, S., De Leon, D.R., Fernandez, R., Villa, R.V.D. and Leguey, S. (2006) Reaction kinetics of FEBEX bentonite in hyperalkaline conditions resembling the cement-bentonite interface. Applied Clay Science, v.33, no.2, p.125-141. doi: 10.1016/j.clay.2006.04.008
  52. Savage, D., Bateman, K., Hill, P., Hughes, C., Milodowski, A., Pearce, J., Rae, E. and Rochelle, C. (1992) Rate and mechanism of the reaction of silicates with cement pore fluids. Applied Clay Science, v.7, no.1-3, p.33-45. doi: 10.1016/0169-1317(92)90026-j
  53. Savage, D., Noy, D. and Mihara, M. (2002) Modelling the interaction of bentonite with hyperalkaline fluids. Applied Geochemistry, v.17, no.3, p.207-223. doi: 10.1016/s0883-2927 (01)00078-6
  54. Savage, D. and Benbow, S. (2007). Low pH cements (No. SKI-R--07-32). Swedish Nuclear Power Inspectorate.
  55. Savage, D., Walker, C., Arthur, R., Rochelle, C., Oda, C. and Takase, H. (2007) Alteration of bentonite by hyperalkaline fluids: A review of the role of secondary minerals. Physics and Chemistry of the Earth, Parts A/B/C, v.32, no.1, p.287-297. doi: 10.1016/j.pce.2005.08.048
  56. SKB (2010) Design and production of the KBS-3 repository: Swedish Nuclear Fuel and Waste Management Co.
  57. Sun, Z., Chen, Y.G., Cui, Y.J., Xu, H.D., Ye, W.M. and Wu, D.B. (2018) Effect of synthetic water and cement solutions on the swelling pressure of compacted Gaomiaozi (GMZ) bentonite: the Beishan site case, Gansu, China. Engineering Geology, v.244, p.66-74. doi: 10.1016/j.enggeo.2018.08.002
  58. Sun, Z., Chen, Y.G., Ye, W.M., Cui, Y.J. and Wang, Q. (2020) Swelling deformation of Gaomiaozi bentonite under alkaline chemical conditions in a repository. Engineering Geology, v.279, p.105891. doi: 10.1016/j.enggeo.2020.105891
  59. Taylor, H.F.W. and Turner, A. (1987) Reactions of tricalcium silicate paste with organic liquids. Cement and Concrete Research, v.17, no.4, p.613-623. doi: 10.1016/0008-8846(87)90134-7
  60. Tournassat, C., Neaman, A., Villieras, F., Bosbach, D. and Charlet, L. (2003) Nanomorphology of montmorillonite particles: Estimation of the clay edge sorption site density by low-pressure gas adsorption and AFM observations. American Mineralogist, v.88, no.11-12, p.1989-1995. doi: 10.2138/am-2003-11-1243
  61. Vieillard, P., Ramirez, S., Bouchet, A., Cassagnabere, A., Meunier, A. and Jacquot, E. (2004) Alteration of the Callovo-Oxfordian clay from Meuse-Haute Marne Underground Laboratory (France) by alkaline solution: II. Modelling of mineral reactions. Applied Geochemistry, v.19, no.11, p.1699-1709. doi: 10.1016/j.apgeochem.2004.03.010
  62. Villar, M.V., Martin, P.L., Pelayo, M., Ruiz, B., Rivas, P., Alonso, E., Lloret, A., Pintado, X., Gens, A. and Linares, J. (1998) FEBEX. Bentonite: origin, properties and fabrication of blocks. Publication tecnica Enresa, 05/1998.
  63. Villa, R.V., Cuevas, J., Ramirez, S. and Leguey, S. (2001) Zeolite formation during the alkaline reaction of bentonite. European Journal of Mineralogy, v.13, no.3, p.635-644. doi: 10.1127/0935-1221/2001/0013-0635
  64. Wang, W.C., Xue, J.C. and Huang, W.H. (2022) Study of engineering properties of low-pH self-compacting concrete for concrete plug. Case Studies in Construction Materials, v.16, p.e01060. doi: 10.1016/j.cscm.2022.e01060
  65. Ye, W.M., He, Y., Chen, Y.G., Chen, B. and Cui, Y.J. (2016) Thermochemical effects on the smectite alteration of GMZ bentonite for deep geological repository. Environmental Earth Sciences, v.75, no.10, p.906. doi: 10.1007/s12665-016-5716-0
  66. Zhang, T., Cheeseman, C.R. and Vandeperre, L.J. (2011) Development of low pH cement systems forming magnesium silicate hydrate (M-S-H). Cement and Concrete Research. v.41, p.439-442. doi: 10.1016/j.cemconres.2011.01.016
  67. Zheng, L., Rutqvist, J., Birkholzer, J.T. and Liu, H.H. (2015) On the impact of temperatures up to 200℃ in clay repositories with bentonite engineer barrier systems: A study with coupled thermal, hydrological, chemical, and mechanical modeling. Engineering Geology, v.197, p.278-295. doi: 10.1016/j.enggeo.2015.08.026
  68. Zysset, M. and Schindler, P.W. (1996) The proton promoted dissolution kinetics of K-montmorillonite. Geochimica et Cosmochimica Acta, v.60, no.6, p.921-931. doi: 10.1016/0016-7037(95)00451-3