• Title/Summary/Keyword: Constant-Current Control

Search Result 694, Processing Time 0.031 seconds

A Study on SOA Driver with Capability to Control Current and Temperature Transient Response (온도 및 전류의 과도응답 제어가 가능한 SOA Driver에 관한 연구)

  • Eom, Jinseob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.1-8
    • /
    • 2014
  • In this paper, SOA Current and Temperature Driver which consisted of LabVIEW programming part capable of current and temperature transient response pattern design, DAQ module for analog voltage in&out, and voltage to current converting chips has realized. The output current(possible to 3A) from the Driver to SOA was clearly constant without ripple and also showed no variance until 1mA unit for a long time operation. The temperature of TEC took several seconds to reach a set temperature, and were maintained stably within ${\pm}^0.1{\circ}C$ for several hours. The proposed Driver can replace the previous high cost SOA Drivers for wavelength swept lasers fully and provides the convenience of transient response design capability for current and temperature.

A PI Control Algorithm with Zero Static Misadjustment for Tracking the Harmonic Current of Three-Level APFs

  • He, Yingjie;Liu, Jinjun;Wang, Zhaoan;Zou, Yunping
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.175-182
    • /
    • 2014
  • Tracking harmonic current quickly and precisely is one of the keys to designing active power filters (APF). In the past, the current state feedback decoupling PI control was an effective means for three-phase systems in the current control of constant voltage constant frequency inverters and high frequency PWM reversible rectifiers. This paper analyzes in detail the limitation of the conventional PI conditioner in the APF application field and presents a novel PI control method. Canceling the delay of one sampling period and the misadjustment for tracking the harmonic current is the key problem of this PI control. In this PI control, the predictive output current value is obtained by a state observer. The delay of one sampling period is remedied in this digital control system by the state observer. The predictive harmonic command current value is obtained by a repetitive predictor synchronously. The repetitive predictor can achieve better predictions of the harmonic current. By this means, the misadjustment of the conventional PI control for tracking the harmonic current is cancelled. The experiment results with a three-level NPC APF indicate that the steady-state accuracy and dynamic response of this method are satisfying when the proposed control scheme is implemented.

Performance Improvement of Stepping Motor Driver (2상 스테핑 모터 드라이버의 성능개선)

  • Kim, Il-Hwan;Oh, Tae-Seok
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.91-97
    • /
    • 2004
  • This paper describes the design of a 2-phase stepping motor driver using CPLD(Complex Programmable Logic Device). The driver IC such as L297(SGS-Thomson Microelectronics), which is mostly used has some difficulties in PWM control because of the switching noise of power MOSFETs. It causes current ripple and acoustic noise. To improve theses characteristics, we proposed a new current control method that the output PWM frequency is almost constant using a digital filter. Also we proposed constant current method for 1-2 phase(half step) excitation. The proposed method is implemented with CPLD(Xilinx, XC9572-PC44). Experimental results show the effectiveness of the proposed method.

  • PDF

The reduction of spatter in $CO_2$ inverter Arc Weling machine by the current control at the moment of short (단락순간의 전류제어에 의한 $CO_2$ 인버터 아크 용접기의 스패터 저감)

  • 고재석;채영민;이승요;목형수;최규하
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.585-590
    • /
    • 1999
  • The conventional $CO_2$ inverter arc machine has constant voltage output characteristic and uses constant wire speed controller for welding current control. By adoption of PWM inverter to the welding machine, the spattering was reduced rather than the thyrister arc welding machine or AC arc welding machine. Moreover, by the high switching frequency, the output reactor size could be reduced evidently. Recently, the studies on optimal voltage and current waveform for the welding performance improvement have been studied. In this paper, a new instantaneous output current control scheme during the short circuit mode was proposed and showed the capability of arc stability improvement and the reduction of spatter generation.

  • PDF

A Design Method of 2D Look-up Table of IPMSM for Electric Vehicle (전기자동차 구동용 IPMSM의 2D Look-up Table 작성기법)

  • Won, Il-Kwon;Kim, Do-Yun;Ko, An-Yeol;Lee, Jung-Hyo;Kim, Young-Real;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.104-105
    • /
    • 2013
  • When actual IPMSM is driving, it is difficult to figure out the correct current during the current control period due to the operation speed limit of digital signal processing. Therefore, in order to control IPMSM for electric vehicle efficiently, we should design 2D Look-up Table to find out optimal current reference corresponding to speed and torque of IPMSM. This paper explains the design method of 2D Look-up Table for optimal current control of constant torque area and constant output area of IPMSM for electric vehicle. Finally, experimental results are presented to verify the reliability of 2D Look-up Table.

  • PDF

PARALLEL-RESONANT CONVERTER WITH ZVS-PWM CONTROL

  • Ninomiya, Tamotsu;Hashimoto, Takayoshi;Tanaka, Hidekazu;Syoyama, Masahito;Tymerski, Richard-P.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.85-90
    • /
    • 1998
  • A parallel-resonant converter with zero-voltage-switching, pulse-width-modulation(ZVS-PWM) control is proposed. Similar to the previously proposed series-resonant counterpart, it has a simple structure and can be controlled at a constant switching frequency using an active-clamp technique. The nearly constant current output characteristic of the parallel-resonant converter lends itself beneficially to precisely controlled constant current power supply applications. An experimental breadboard featured an accuracy of $\pm$1% for an output current of 2A, with an efficiency of 75%.

  • PDF

Common Mode Voltage Cancellation in a Buck-Type Active Front-End Rectifier Topology

  • Aziz, Mohd Junaidi Abdul;Klumpner, Christian;Clare, Jon
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.276-284
    • /
    • 2012
  • AC/AC power conversion is widely used to feed AC loads with a variable voltage and/or a variable frequency from a constant voltage constant frequency power grid or to connect critical loads to an unreliable power supply while delivering a very balanced and accurate sinusoidal voltage system of constant amplitude and frequency. The load specifications will clearly impose the requirements for the inverter stage of the power converter, while wider ranges of choices are available for the rectifier. This paper investigates the utilization of a buck-type current source rectifier as the active front-end stage of an AC/AC converter for applications that require an adjustable DC-link voltage as well as elimination of the low-frequency common mode voltage. The proposed solution is to utilize a combination of two or more zero current vectors in the Space Vector Modulation (SVM) technique for Current Sources Rectifiers (CSR).

Rotor Time Constant Compensation for Vector-Controlled Induction Motor with DC Current Injection Method (직류전류 주입법에 의한 벡터제어 유도전동기의 회전자 시정수 보상)

  • Lee, Gyeong-Ju;Lee, Deuk-Gi;Jeong, Jong-Jin;Choe, Jong-U;Kim, Heung-Geun;No, Ui-Cheol;Jeon, Tae-Won
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.2
    • /
    • pp.69-76
    • /
    • 2002
  • To obtain a high performance in a vector controlled induction motor, it is essential to know the instantaneous position of the rotor flux which depends on the rotor time constant. But the rotor time constant mainly varies due to the temperature rise in the motor winding, so real time compensating algorithm is necessary. This paper proposes that it uses short duration pulses added to the constant flux command current and then resultant torque command current produced by speed controller is utilized for the rotor resistance estimation. This method has advantage with a low computational requirement and does not require voltage sensors. The proposed method is proved by simulations and experimentals.

A study on high speed control of step motor using current source (전류원을 이용한 스텝 모타의 고속 제어에 관한 연구)

  • 오동성;김종준;윤명중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.594-596
    • /
    • 1987
  • In this study, a method of obtaining reasonably large and constant torque at high speed is given in order to improve the performance of the open loop controlled step motor system using the current source, thus resulting in high performance compared to the conventional current limiting using resistor and chopper.

  • PDF

The Control of load Commutated Current Source Inverter for Induction Motor Drive (유도전동기(誘導電動機) 구동(驅動)을 위한 부하전류식(負荷轉流式) 전류형(電流型) 인버터의 제어(制御))

  • Chung, Y.T.;Sim, J.M.;Lee, S.Y.;Soh, Y.C.;Lee, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.255-257
    • /
    • 1994
  • The V/F slip frequency constant control methods are used for driving induction motor with load commutated current source inverter, that is. constant V/F and slip frequency driving is used to load commutate the inverter below the critical frequency, while constant voltage and variable frequency and slip frequency driving are used in above the critical region. In order to applicate the load commutated current source inverter to the general use, speed control range of induction noter is selected to two times at rated frequency. Therefore, economical application is possible because of the maximum reduction of the condenser of the inverter output port. The use of the proposed force commutated circuit improves the false operation of force commutated circuit and inverter commutation failure which are produced by the influence of the lower-order harmonics of the conventional load commutated current source inverter at starting.

  • PDF