• Title/Summary/Keyword: Constant current source

Search Result 252, Processing Time 0.026 seconds

Real-Time Implementation of Shunt Active Filter P-Q Control Strategy for Mitigation of Harmonics with Different Fuzzy M.F.s

  • Mikkili, Suresh;Panda, Anup Kumar
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.821-829
    • /
    • 2012
  • This research article presents a novel approach based on an instantaneous active and reactive power component (p-q) theory for generating reference currents for shunt active filter (SHAF). Three-phase reference current waveforms generated by proposed scheme are tracked by the three-phase voltage source converter in a hysteresis band control scheme. The performance of the SHAF using the p-q control strategy has been evaluated under various source conditions. The performance of the proposed control strategy has been evaluated in terms of harmonic mitigation and DC link voltage regulation. In order to maintain DC link voltage constant and to generate the compensating reference currents, we have developed Fuzzy logic controller with different (Trapezoidal, Triangular and Gaussian) fuzzy M.F.s. The proposed SHAF with different fuzzy M.F.s is able to eliminate the uncertainty in the system and SHAF gains outstanding compensation abilities. The detailed simulation results using MATLAB/SIMULINK software are presented to support the feasibility of proposed control strategy. To validate the proposed approach, the system is also implemented on a real time digital simulator and adequate results are reported for its verifications.

A Study on Development of High Efficiency SMPS used in LED (LED용 고효율 SMPS 개발에 관한 연구)

  • Kwak, Dong-Kurl;Lee, Bong-Seob;choi, Shin-Hyeong;Park, Young-Jic
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.431-432
    • /
    • 2014
  • Recently, the demand of LED(light-emitting diode) lighting is gradually enlarged by governmental saveenergy policy, which the LED lighting has been established compulsorily in new buildings, public institutions, and residential installations etc.. The LED lighting is driven by SMPS (switching mode power supply). The SMPS requires high efficiency because the SMPS changes a commercial ac power source to low voltage dc power source. Harmonic components that occur in the conversion process of SMPS decrease system power factor and deal great damage in electric power system. To improve such problems, this paper proposes a SMPS of high efficiency. The switching devices in the proposed SMPS are operated by soft switching technique using a new quasi-resonant circuit. The input ac current waveform in the proposed SMPS becomes a quasi-sinusoidal waveform proportional to the magnitude of input ac voltage under constant switching frequency. As a result, the proposed SMPS obtains low switching power loss and high efficiency, and its input power factor is nearly in unity.

  • PDF

Experimental Analysis on Temperature Compensation of Capacitive Voltage Divider for a Pulsed High Voltage Measurement (고전압 펄스신호 측정용 분압기의 온도보상에 관한 실험)

  • Jang, S.D.;Son, Y.G.;Kwon, S.J.;Oh, J.S.;Cho, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1530-1533
    • /
    • 2005
  • Total 12 units of high power klystron-modulator systems as microwave source is under operation for 2.5-GeV electron linear accelerator in Pohang Light Source(PLS) linac. RF power and beam power of klystron are precisely measured for the effective control of electron beam. A precise measurement and measurement equipment with good response characteristics are required for this. Input power of klystron is calculated from the applied voltage and the current on its cathode. Tiny measurement error severely effects RF output power value of klystron. Therefore, special care is needed to measure precise beam voltage. Capacitive voltage divider(CVD) unit is intended for the measurement of beam voltage of 400 kV generated from the pulsed klystron-modulator system. Main parameter to determine the standard capacitance in the high arm of CVD is dielectric constant of insulation oil. Therefore CVD should be designed to have a minimum capacitance variation due to voltage, frequency and temperature in the measurement range. This paper will discuss the analysis of capacitive voltage divider for a pulsed high-voltage measurement, and the empirical relations between capacitance and oil temperature variation.

  • PDF

Analysis on the Light Source Efficiency of CCFL and LED Monitors (CCFL 및 LED 모니터 광원 효율 분석)

  • Shin, Hee-Woo;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.44-50
    • /
    • 2021
  • In this paper, we analyze the efficiency of light sources of CCFL and LED monitors. Cold Cathode Fluorescent Lamp (CCFL), which is widely used as a light source for LCD display, supplies a high voltage of 1,200[V] or more when it is initially driven. In addition, a constant normal voltage of 400 ~ 800[V] after lighting, and 3 ~ 6[ mA] is needed for a power circuit that can stabilize the current. Applying a high voltage causes a lot of stress on the inverter and generates a lot of heat in the cold cathode lamp, causing significant damage to the BLU (Back Light Unit), resulting in a burning phenomenon, which causes the screen to output normal colors when outputting the screen. We can not see the yellow output and the screen darkened. Therefore, in order to prevent such a symptom in advance, efficiency can be increased by using a Light Emitting Diode (LED) as the light source of the LCD display instead of a cold cathode fluorescent lamp (CCFL). As a result, it is shown that the LED method outperforms the CCFL method.

Implementation of Impedance Method to Estimate Blood Flow Variation with Cuff Pressure Change (커프 압력 조절에 따른 혈류량 변화 평가를 위한 임피던스법의 구현)

  • Jeong, Do-Un;Bae, Jin-Woo;Shon, Jung-Man;Yae, Su-Yung;Choi, Byeong-Cheol;Nam, Ki-Gon;Kim, Cheol-Han;Jeon, Gye-Rok
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.462-472
    • /
    • 2004
  • In this study, we measured the blood flow on arm by non-invasive method and implemented a system to measure variation of the blood flow by estimating bio-electrical impedance and arterial pressure according to cuff pressure. The implemented system measured impedance variation according to pressure variation applied by artificial cuff pressure on the measuring position. The system consisted of pressure measuring part and impedance measuring part using 4-electrode method. Pressure measuring part was composed of semiconductor pressure sensor and electronic circuit for signal processing of sensor output signal. In addition, impedance measuring part was composed of constant current source circuit and lock-in amplifier for detecting impedance signal. We conducted experiments of impedance measuring part using standard resistance for performance evaluation of the implemented system. In addition we experimented to estimate variation of the blood flow by measuring impedances of the experimental group. We estimated ratio of the blood flow resistance using mean arterial pressure and variation of the blood flow. As a result the ratio of the blood flow resistance and variation of blood flow were in an inverse relationship with each other and the correlation coefficient was -0.96776.

The UV LED Bar Optimal Design with Human Detection and Control Function (인체 감지 제어 기능을 갖는 UV LED Bar의 최적 설계)

  • Kim, Chang-Sun;Lee, Jae-Hak;Goh, Young-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1219-1226
    • /
    • 2017
  • In this paper, it is performed the optimal design of the UV LED bar which can be used variously. The UV LED Bar emits ultraviolet rays, so it is important to emit ultraviolet rays constantly for the purpose of use. In order to emit a certain amount of ultraviolet rays as ever, the ultraviolet ray emission should be driven by a constant current source within the operable input voltage range. And also the heat dissipation is particularly important because of the long ultraviolet emission retention time due to the UV utilization characteristics. In addition, since human body protection is essential, the algorithm is configured to operate according to human body detection using distance sensor and Bluetooth. Three 365nm UV LEDs were used in series to emit ultraviolet UVA, operating at the constant current of 500mA with an efficiency of 87.5% and a power consumption of 6.006W. The ultraviolet radiation dose was measured at $5.35mW/cm^2$ at the distance of 10 cm when measured by the Lutron ultraviolet measuring instruments.

Analysis of Characteristic for LCC Resonant type High Frequency Inverter. (LCC 공진형 고주파 인버터의 특성해석)

  • Bae, Sang-June;Kim, Jong-Hae;Lee, Bong-Seop;Kim, Kyung-Sik;O, Seung-Hune;Min, Byung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.495-497
    • /
    • 1996
  • This paper proposes LCC type high frequency resonant inverter to be used as a source of induction heating device or ultrasonic device and considers of operating characteristic for it. The inverter is operated safely over wide range load, because it has both panel loaded capacitor and series loaded capacitor. Then, switching frequency of the inverter is controlled by feedback voltage and current in order to have constant output power even when load is varied.

  • PDF

Fuel Cells Power Generating System and Power Control Techniques (연료 전지 시스템과 전력제어기술)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Choi, Won-Beom
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.500-503
    • /
    • 1991
  • Fuel cells power generating system converts the chemical energy of a fuel directly into electrical energy. The merits of fuel cells power generating system are pollution free and high energy conversion efficiency. Fuel cells power generating system includes the DC/AC converter. DC source obtained from stack is converted to the constant AC voltage or current by the inverter. In this paper, the power control techniques for the fuel cells power generating system are described.

  • PDF

Battery Energy Storage Based Voltage and Frequency Controller for Isolated Pico Hydro Systems

  • Singh, Bhim;Rajagopal, V.
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.874-883
    • /
    • 2009
  • This paper deals with an integrated voltage and frequency (VF) controller for isolated asynchronous generators (IAG) driven by a constant power pico-hydro uncontrolled turbine feeding three-phase four-wire loads. The proposed VF controller is used to control the frequency and voltage of an IAG with load leveling. Such a VF controller is also known as an integrated electronic load controller (IELC) which is realized using an isolated star/polygon transformer with a voltage source converter (VSC) and a battery at its DC bus. The proposed generating system with a VFC is modeled and simulated in MATLAB along with Simulink and Simpower system (SPS) toolboxes. The simulated results are presented to demonstrate the performance of an isolated asynchronous generator feeding three-phase four-wire loads with neutral current compensation.

Fault Immune Pico-Hydro Powered Base Station of Remote Telecommunication Tower

  • Verma, Vishal;Pant, Peeyush;Singh, Bhim
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1612-1620
    • /
    • 2016
  • This paper presents the dynamic excitation control of a siphon-turbine coupled pico-hydro powered cage rotor induction generator and load matching for off-grid electricity generation. Through the proposed dual-role of the current-controlled voltage source converter (VSC), acting as static synchronous compensator and load controller, real and reactive power are dynamically controlled in a decoupled manner with a self supported DC-bus. The proposed scheme entails minimal computation for ensuring the rated (set) capacity of real power. The scheme also exhibits fault immunity for protection, thus enabling the effective handling of constant power electrical loads presented by base telecom station towers in remote locations. The performance of the system is evaluated under MATLAB/Simulink and is experimented through a developed hardware prototype. Simulation and experimental results show close conformity and validate the effectiveness of the proposed scheme.