• 제목/요약/키워드: Constant current controller

검색결과 217건 처리시간 0.031초

파워 LED의 수학적 모델링 및 정전류 적응 제어기 설계에 관한 연구 (A Study on the Mathematical Modeling and Constant Current Adaptive Controller Design for Power LEDs)

  • 김응석;김영태
    • 조명전기설비학회논문지
    • /
    • 제25권9호
    • /
    • pp.8-13
    • /
    • 2011
  • In this paper, a mathematical model of the power LED system including the drive circuit will be presented to control the power LEDs current. Using this mathematical model, the constant current adaptive controller will be designed. A constant current drive circuit for power LEDs will be configured using Buck-type converter. Precise constant current controller design is enabled by presenting the mathematical model of power LEDs including the current driving circuits. Using the mathematical model of power LEDs and its drive circuits, the constant current adaptive controller will be designed to obtain the robustness for the parameter uncertainties. In order to verify the validity of the proposed controller, computer simulations are performed.

파워 LED 구동을 위한 정전류 제어기 설계 (A Constant Current Controller Design for Power LED Drive)

  • 김응석;김철진
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.555-561
    • /
    • 2010
  • In this paper, the constant current controller is designed to regulate the driving current of a power LED. The controller design model of the power LED including its driving circuit is proposed to design the constant current controller. A buck converter is also introduced to drive the power LED. The PI-based digital controller is implemented to validate the proposed strategy for the power LED driving.

전류오차 궤환을 이용한 유도전동기 회전자 시정수 보상 (Compensation of the rotor time constant of induction motor using current error feedback)

  • 김승민;이무영;권우현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.195-198
    • /
    • 1997
  • This paper proposes the effective compensation method of the rotor time constant of induction motor. An indirect vector control method is highly dependent on the motor parameters. To solve the problem of performance degradation due to parameter variation in an indirect vector control of induction motor, we compensate the rotor time constant by current error feedback. The proposed method is a simple on-line rotor time constant compensation method using the information from terminal voltages and currents. As the current error, difference between current command and estimated current, approaches to zero, the value of rotor time constant in an indirect vector controller follows the real value of induction motor. This scheme is valid transient region as well as steady state region regardless of low or high speed. This method is verified by computer simulation. For this, we constructed the simulation model of induction motor, indirect vector controller and current regulated PWM (CRPWM) voltage source inverter (VSI) using SIMULINK in MATLAB.

  • PDF

Hybrid Stepping Motor의 Driving Controller 설계와 응용에 관한 연구 (A Study on Applications and Design of Driving Controller Circuit in hybrid Stepping Motor)

  • 최도순
    • 한국산업정보학회논문지
    • /
    • 제6권2호
    • /
    • pp.74-79
    • /
    • 2001
  • 로봇과 자동화기기에 범용으로 사용되는 Stewing Motor의 Driving을 위하여 unipolar 방식과 bipolar 방식의 Controller Circuit를 design 하였으며 특히 design시 Digital logic을 이용하여 Controller를 설계 제작하여 실험을 통해 그 응용성을 실험하였다. 또한 Motor의 효율 향상을 위하여 Motor의 Winding에 흐르는 전류를 제어하기 위하여 constant Current Limit Methode와 Constant Voltage Limit Methode를 분석하고 실재 회로 제작 시 응용하여 Motor의 효율을 향상시켰다.

  • PDF

Current Controlled PWM for Multilevel Voltage-Source Inverters with Variable and Constant Switching Frequency Regulation Techniques: A Review

  • Gawande, S.P.;Ramteke, M.R.
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.302-314
    • /
    • 2014
  • Due to advancements in power electronics and inverter topologies, the current controlled multilevel voltage-source pulse width modulated (PWM) inverter is usually preferred for accurate control, quick response and high dynamic performance. A multilevel topology approach is found to be best suited for overcoming many problems arising from the use of high power converters. This paper presents a comprehensive review and comparative study of several current control (CC) techniques for multilevel inverters with a special emphasis on various approaches of the hysteresis current controller. Since the hysteresis CC technique poses a problem of variable switching frequency, a ramp-comparator controller and a predictive controller to attain constant switching frequency are described along with its quantitative comparison. Furthermore, various methods have been reviewed to achieve hysteresis current control PWM with constant switching frequency operation. This paper complies various guidelines to choose a particular method suitable for application at a given power level, switching frequency and dynamic response.

시뮬레이션을 이용한 서보 위치제어기의 전류, 속도, 위치이득 동조기법에 관한 연구 (A Study on Current, Velocity, Position Gain Tuning Technique of Servo Position Controller using Simulation)

  • 박기우
    • 제어로봇시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.634-640
    • /
    • 2011
  • When a servo position controller of a robot or a driving units is composed of a PID controller, servomechanism which is modelled is composed of current, velocity and position control loops. After this model is simulated, the technique operating gain of each controller is suggested. The model consists of current, velocity and position controllers from the inside to the outside gradually. Also, to combine velocity and position controllers with 2 order system, simulation is performed after current controllers are composed, which are able for current loop to work ideally. If a current controller is treated with constant, it is possible for velocity and position controller to consist of controller into 2 order system. The technique is verified by applying T-company servo motor which is much more applied to current, velocity and position controller robots.

매입형 영구자석 동기전동기의 일정 토크 영역에서 최대 토오크 운전에 관한 연구 (Study of Maximum Torque Operation of Interior Permanent Magnet Synchronous Motor in Constant Torque Region)

  • 김장목;김수열;류호선;임익훈
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권3호
    • /
    • pp.195-203
    • /
    • 2000
  • In this paper a new controller is proposed to operate the interior permanent magnet synchronous motor(IPMSM) by the control method of the maximum torque per ampere in constant torque region. The implementation method of the conventional torque controller is explained and analyzed exactly. The proposed controller does not use the torque and q-axis current of the speed controller but the amplitude of the stator current in order to utilize not only the magnetic alignment torque but also the reluctance in the constant region, gurantees the linearity of the torque, and is easily implemented. These attractive are verified through the experiment.

  • PDF

$CO_2$ 인버터 아크용접기의 송급속도 제어에 의한 용접성능향상에 관한 연구 (A Study on Welding Performance Improvement in $CO_2$ Inverter Arc Welding Machine by Constant Wire Feeding Rate Control)

  • 김길남;고재석;채영민;원충연;김규식;목형수;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.563-568
    • /
    • 1999
  • Generally the control method of wire feeding motor in welding machine has been used full-wave phase control method. The fire-angle control generates low frequency speed ripple, and it causes the output current ripple. So it results in the variation of welding condition and low welding performances such as spatter generation and bead state. For the purpose of welding performances improvement by speed controller in wire feeding motor, in this paper the constant speed control method for welding machine is proposed. The proposed system is composed of speed control loop and current control loop. As a result of experiment by using proposed constant wire feed experiment by using proposed constant wire feed speed controller, the output voltage and current waveform and metal transfer are maintained stably. And moreover the number of instantaneous short circuit occurrence is reduced remarkably.

  • PDF

빛의 밝기가 일정한 교류 구동 LED 조명기술 (Alternating Current (AC) Powered LED Lighting Technology with Constant Brightness)

  • 이동원;안호명;김병철
    • 한국전기전자재료학회논문지
    • /
    • 제35권5호
    • /
    • pp.466-470
    • /
    • 2022
  • In order to widely disseminate LED lighting, LED lighting technology that directly uses AC commercial power has been recently introduced. AC powered LED lighting technology has a problem in that the light brightness of the LED changes because the voltage applied to the LED and the current flowing through the LED continuously change. In this study, when the LED current is greater than the design current, the current control signal generated by the controller is supplied to the current source to supply only the design current to the LED by increasing the voltage drop at the current source. If it is smaller than the design current, the controller is adjusted so that the current is supplied only to the LED without a voltage drop in the current source. It can be seen that the higher the maximum rectified voltage, the faster the lighting time of the LED light emitting block is, so that the power factor of the LED lighting is improved. The LED lighting technology proposed in this study enables LED lighting with constant light brightness, reduced power consumption, and long lifetime.

Design of a High-Precision Constant Current AC-DC Converter with Inductance Compensation

  • Chang, Changyuan;Xu, Yang;Bian, Bin;Chen, Yao;Hu, Junjie
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.840-848
    • /
    • 2016
  • A primary-side regulation AC-DC converter operating in the PFM (Pulse Frequency Modulation) mode with a high precision output current is designed, which applies a novel inductance compensation technique to improve the precision of the output current, which reduces the bad impact of the large tolerance of the transformer primary side inductance in the same batch. In this paper, the output current is regulated by the OSC charging current, which is controlled by a CC (constant current) controller. Meanwhile, for different primary inductors, the inductance compensation module adjusts the OSC charging current finely to improve the accuracy of the output current. The operation principle and design of the CC controller and the inductance compensation module are analyzed and illustrated herein. The control chip is implemented based on a TSMC 0.35μm 5V/40V BCD process, and a 12V/1.1A prototype has been built to verify the proposed control method. The deviation of the output current is within ±3% and the variation of the output current is less than 1% when the inductances of the primary windings vary by 10%.