• Title/Summary/Keyword: Constant current (CC) output

Search Result 9, Processing Time 0.026 seconds

Study of Constant Current-Constant Voltage Output Wireless Charging System Based on Compound Topologies

  • Tan, Linlin;Pan, Shulei;Xu, Changfu;Yan, Changxin;Liu, Han;Huang, Xueliang
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1109-1116
    • /
    • 2017
  • Wireless power transfer (WPT) technology has the advantages of intelligence and facilitation. This paper designs a WPT system applied to battery charging and provides a strategy which switches from the constant current (CC) charging mode to constant voltage (CV) charging mode. The LCL-LCL topology is used to realize the CC output, while the LCL-S (series compensation) topology is used to realize the CV output. The main factor affecting the output characteristics is extracted by analyzing the two topologies above. Based on the main factor, this paper puts forward a modified way to design the system. In addition, on-line monitors for the battery and switches are placed at receiving side, which avoids the need for introducing an information interaction module into the system. Therefore, the complexity of the controlling system is reduced. Finally, simulation and experimental analyses are carried out to verify the correctness of the compound topologies.

Design of a High-Precision Constant Current AC-DC Converter with Inductance Compensation

  • Chang, Changyuan;Xu, Yang;Bian, Bin;Chen, Yao;Hu, Junjie
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.840-848
    • /
    • 2016
  • A primary-side regulation AC-DC converter operating in the PFM (Pulse Frequency Modulation) mode with a high precision output current is designed, which applies a novel inductance compensation technique to improve the precision of the output current, which reduces the bad impact of the large tolerance of the transformer primary side inductance in the same batch. In this paper, the output current is regulated by the OSC charging current, which is controlled by a CC (constant current) controller. Meanwhile, for different primary inductors, the inductance compensation module adjusts the OSC charging current finely to improve the accuracy of the output current. The operation principle and design of the CC controller and the inductance compensation module are analyzed and illustrated herein. The control chip is implemented based on a TSMC 0.35μm 5V/40V BCD process, and a 12V/1.1A prototype has been built to verify the proposed control method. The deviation of the output current is within ±3% and the variation of the output current is less than 1% when the inductances of the primary windings vary by 10%.

A Constant-Current and Constant-Voltage Control Method for Primary-Side Regulated Fly-Buck Converter (1차 측 제어 플라이벅 컨버터의 정전류 및 정전압 제어)

  • Younghoon Cho;Paul Jang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.30-38
    • /
    • 2023
  • In this paper, a constant current(CC) and constant voltage(CV) control method using a primary-side regulated(PSR) fly-buck converter is proposed. Because the primary-side structure of the fly-buck converter is the same as that of the synchronous buck converter, it always operates in continuous conduction mode(CCM). Therefore, in the proposed method, the load information on the secondary side can always be easily estimated by measuring the primary inductor current at the midpoint of the switch-on period. An accurate CC/CV control can be achieved through simple calculations based on this estimated information. Consequently, the proposed method is advantageous for optimizing the control performance of the PSR converter. The validity of the proposed control was verified using a 5 W prototype of a PSR fly-buck converter. The experimental results confirmed that the current reference of 500 mA was followed within the error range of 1.2%, and that the voltage reference of 12 V was followed within the error range of 1.8% despite the indirect control of the load current and output voltage from the primary side.

Design and Control of the Phase Shift Full Bridge Converter for the On-board Battery Charger of Electric Forklifts

  • Kim, Tae-Hoon;Lee, Seung-Jun;Choi, Woo-Jin
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.113-119
    • /
    • 2012
  • This paper describes the design and control of a phase shift full bridge converter with a current doubler, which can be used for the on-board charger for the lead-acid battery of electric forklifts. Unlike the common resistance load, the battery has a large capacitance element and it absorbs the entire converter output ripple current, thereby shortening the battery life and degrading the system efficiency. In this paper a phase shift full bridge converter with a current doubler has been adopted to decrease the output ripple current and the transformer rating of the charger. The charge controller is designed by using the small signal model of the converter, taking into consideration the internal impedance of the battery. The stability and performance of the battery charger is then verified by constant current (CC) and constant voltage (CV) charge experiments using a lead-acid battery bank for an electric forklift.

Wireless Power Transfer for Electric Vehicles Charging Based on Hybrid Topology Switching With a Single Inverter

  • Chen, Yafei;Zhang, Hailong;Kim, Dong-Hee;Park, Sung-Jun;Park, Seong-Mi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_1
    • /
    • pp.115-124
    • /
    • 2020
  • In wireless power transfer (WPT) system, the conventional compensation topologies only can provide a constant current (CC) or constant voltage (CV) output under their resonant conditions. It is difficult to meet the CC and CV hybrid charging requirements without any other schemes. In this study, a switching hybrid topology (SHT) is proposed for CC and CV electric vehicle (EV) battery charging. By utilizing an additional capacitor and two AC switches (ACSs), a double-side LCC (DS-LCC) and an inductor and double capacitors-series (LCC-S) topologies are combined. According to the specified CC and CV charging profile, the CC and CV charging modes can be flexibly converted by the two additional ACSs. In addition, zero phase angle (ZPA) also can be achieved in both charging modes. In this method, because the operating frequency is fixed, without using PWM control, and only a small number of devices are added, it has the benefits of low-cost, easy-controllability and high efficiency. A 3.3-kW experimental prototype is configured to verify the proposed switching hybrid charger. The maximum DC efficiencies (at 3.3-kW) of the proposed SHT is 92.58%.

Development of high-efficiency bidirectional charger for V2G with 150-1000V output range (150-1000V 출력범위를 갖는 V2G용 고효율 양방향 충전기 개발)

  • Na, Jaeho;Park, Junsung;Shin, Waegyeong
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.447-448
    • /
    • 2019
  • 본 논문은 다양한 전기 자동차의 배터리 전압을 위해 150V-1000V의 넓은 출력전압을 만족하고 전기자동차의 수요자원화를 위해 양방향 제어가 가능한 DC-DC 컨버터를 제안한다. 제안하는 컨버터는 절연형 컨버터와 비절연형 컨버터가 결합된 2단 방식의 구조로 연결된 배터리의 전압에 따라 CC(Constant Current) 또는 CP(Constant Power)로 동작한다. 전체시스템은 20kW급으로 설계하여 시뮬레이션 및 시제품을 통해 출력특성 및 효율을 분석하였다.

  • PDF

Soft Switching Multiple Output Charger By Using Novel Time Division Multiple Control Technique (새로운 시분할 다중 제어 기법을 이용한 소프트 스위칭 다중 출력 충전기)

  • Tran, Van-Long;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.191-192
    • /
    • 2014
  • Multiple output converters (MOCs) are widely used for applications which require various levels of the output voltages due to their benefits in cost, volume, and efficiency. However, most of the MOCs developed so far can regulate only one output tightly and require as many secondary windings in the transformer as the number of the outputs. In this paper, a novel Time Division Multiple Control (TDMC) method to regulate all the outputs in high precision is proposed and applied for the multiple output battery charger based on the phase shift full bridge topology to charge a multiple number of batteries at one time. The proposed converter can charge three different kinds of batteries or same kind of batteries in different state of charges (SOCs) by using constant current/constant voltage (CC/CV) charge mode independently. At the same time it can provide an even degree of tight regulation for each output to satisfy the strict ripple requirement of the battery. The validity and feasibility of the proposed method are verified through the experiments.

  • PDF

Digital Control of Secondary Active Clamp Phase-Shifted Full-Bridge Converters

  • Che, Yanbo;Ma, Yage;Ge, Shaoyun;Zhu, Dong
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.421-431
    • /
    • 2014
  • A DSP-based self-adaptive proportional-integral (PI) controller to control a DC-DC converter is proposed in this paper. The full-bridge topology is adopted here to obtain higher power output capability and higher conversion efficiency. The converter adopts the zero-voltage-switching (ZVS) technique to reduce the conduction losses. A parallel secondary active clamp circuit is added to deal with the voltage overshoot and ringing effect on the transformer's secondary side. A self-adaptive PI controller is proposed to replace the traditional PI controller. Moreover, the designed converter adopts the constant-current and constant-voltage (CC-CV) output control strategy. The secondary active clamp mechanism is discussed in detail. The effectiveness of the proposed converter was experimentally verified by an IGBT-based 10kW prototype.

Study of a LED Driver for Extension of Color Gamut (색 영역의 확장을 위한 LED 구동회로에 대한 연구)

  • Shin, Dong-Seok;Park, Chan-Soo
    • Journal of Broadcast Engineering
    • /
    • v.21 no.5
    • /
    • pp.760-769
    • /
    • 2016
  • This paper proposes a hybrid LED driving circuit and its control method for extension of the color gamut of LED. The proposed hybrid LED driving circuit provides the constant current by switching regulation in the high current and by linear regulation in the low current through LED. Furthermore, the magnitudes of the high current and low current were controlled by CC(Continuous Current) control method and PWM(Pulse Width Modulation) control method, respectively. We experimentally confirmed that the current through RGB LED is linearly controlled to 2% maximum current ratio by varying PWM in the proposed driving circuit and control method. As a result of the measurement of the output light color in CIE1976 chromaticity coordinates, we confirmed that the color, which not be expressed by the existing method, uniformly expressed. We confirmed that the color, which can not be expressed by the existing method, was uniformly output and verified that the color gamut was expanded by the low current controlled by the proposed driving circuit and control method.