• 제목/요약/키워드: Constant Current Controller

검색결과 217건 처리시간 0.021초

신경회로망을 이용한 리니어 펄스 모터의 정밀 제어 (Precise Control of a Linear Pulse Motor Using Neural Network)

  • 권영건;박정일
    • 제어로봇시스템학회논문지
    • /
    • 제6권11호
    • /
    • pp.987-994
    • /
    • 2000
  • A Linear Pulse Motor (LPM) is a direct drive motor that has good performance in terms of accuracy, velocity and acceleration compared to the conventional rotating system with toothed belts and ball screws. However, since an LPM needs supporting devices which maintain constant air-gap and has strong nonlinearity caused by leakage magnetic flux, friction and cogging, etc., there are many difficulties in improvement on accuracy with conventional control theory. Moreover, when designing the position controller of LPM, the modeling error and load variations has not been considered. In order to compensate these components, the neural network with conventional feedback controller is introduced. This neural network of feedback error learning type changes the current commands to improve position accuracy. As a result of experiments, we observes that more accurate position control is possible compared to conventional controller.

  • PDF

능동판토그래프의 저차제어기 설계 (A Low-Order Controller Design of Active Pantograph System)

  • 백승구;장석각;권성태;김진환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.940-945
    • /
    • 2009
  • This paper presents the design method of low order controller for the active pantograph of electric train system. The pantograph is the most playa role to supply constant current to the train. The design objectives are to have good tracking performance about reference contact force despite the stiffness variation that is like sinusoidal function concerned in train speed or span length of contact wire. In this paper, we consider stiffness variation from external disturbance of active pantograph to simplify model equation, and propose simple second-order controller which is designed by Characteristic ratio assignment(CRA) control method. Finally, we verify time response appling to model equation of real system and frequency response about parameter uncertainty like stiffness variation. it is performed by Matlab version 6.5 and Matlab simulink simulation.

  • PDF

Direct Torque Control Strategy (DTC) Based on Fuzzy Logic Controller for a Permanent Magnet Synchronous Machine Drive

  • Tlemcani, A.;Bouchhida, O.;Benmansour, K.;Boudana, D.;Boucherit, M.S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권1호
    • /
    • pp.66-78
    • /
    • 2009
  • This paper introduces the design of a fuzzy logic controller in conjunction with direct torque control strategy for a Permanent Magnet synchronous machine. A stator flux angle mapping technique is proposed to reduce significantly the size of the rule base to a great extent so that the fuzzy reasoning speed increases. Also, a fuzzy resistance estimator is developed to estimate the change in the stator resistance. The change in the steady state value of stator current for a constant torque and flux reference is used to change the value of stator resistance used by the controller to match the machine resistance.

IPMSM 전동기의 비선형 적응 백스텝핑 속도 제어 (Nonlinear and Adaptive Back-Stepping Speed Control of IPMSM)

  • 전용호;조황
    • 한국전자통신학회논문지
    • /
    • 제6권6호
    • /
    • pp.855-864
    • /
    • 2011
  • 본 논문은 IPMSM(Interior Permanent Magnet Synchronous Motor)의 고성능 운전을 위해 비선형 제어를 기반으로 하는 적응 백스텝핑 제어기를 제안한다. 먼저 각속도의 추종성능을 향상시키기 위해서 비선형 백스텝핑 제어기를 설계한다. 파라메타 변동의 영향을 고려하지 않고 설계된 제어기는 고성능 운전이 어렵다. 부하토크의 변동에 대해 실시간 적응할 수 있는 파라메타 추정기를 설계에 포함하여 고성능 운전이 가능하게 한다. 또한 전동기의 효율적인 전력소비를 위하여 최대토크를 얻기 위한 최소전류의 운전을 할 수 있도록 제어기를 설계하였다. 제안된 제어기로 2마력급의 IPMSM에 적용하여 각속도 레퍼런스에 대한 추종성능과 부하토크 변동에 대한 추정, 그리고 MTPA(Maximum Torque per Ampere) 운전을 시험하여 일정토크 운전영역에서 안정화된 강건한 제어기임을 시뮬레이션을 통해 확인할 수 있었다.

DSP를 이용한 3상 태양광 인버터의 SPWM 전력변환기술에 대한 연구 (A Study on the SPWM based Power Conversion Technology of the Three-Phase Photovoltaic Inverter Using DSP)

  • 김효성;유호성;이유정;정훈;고윤석
    • 한국전자통신학회논문지
    • /
    • 제12권6호
    • /
    • pp.1099-1106
    • /
    • 2017
  • 본 논문에서는 신재생 에너지원인 태양광 발전을 위한 3상 인버터의 전력변환기술을 연구하였다. 태양광 인버터로는 정전압 공급 방식의 전압형 인버터, 제어기법으로는 SPWM 제어기법이 채택되었다. 태양광 인버터의 SPWM 제어기로는 강력한 고속 데이터 연산능력을 가지는 DSP가 채택되었으며, 배터리의 충전에 일정량의 전류를 공급하기 위해서 태양광 컨트롤러가 사용되었다. 끝으로, DSP를 주제어장치로 하는 소용량 3상 태양광 인버터 시스템이 시험, 제작되었으며, 실험을 통해서 SPWM 기반의 전력변환기능이 검증되었다.

DCM Frequency Control Algorithm for Multi-Phase DC-DC Boost Converters for Input Current Ripple Reduction

  • Joo, Dong-Myoung;Kim, Dong-Hee;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2307-2314
    • /
    • 2015
  • In this paper, a discontinuous conduction mode (DCM) frequency control algorithm is proposed to reduce the input current ripple of a multi-phase interleaved boost converter. Unlike conventional variable duty and constant frequency control, the proposed algorithm controls the switching frequency to regulate the output voltage. By fixing the duty ratio at 1/N in the N-phase interleaved boost converter, the input current ripple can be minimized by ripple cancellation. Furthermore, the negative effects of the diode reverse recovery current are eliminated because of the DCM characteristic. A frequency controller is designed to employ the proposed algorithm considering the magnetic permeability change. The proposed algorithm is analyzed in the frequency domain and verified by a 600 W three-phase boost converter prototype that achieved 57% ripple current reduction.

전류공유버스를 이용한 병렬 인버터 순시 제어기 설계 (Instantaneous Current Control for Parallel Inverter with a Current Share Bus)

  • 이창석;김시경
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.90-94
    • /
    • 1998
  • The parallel inverter is popularly used because of its fault-tolerance capability, high-current outputs at constant voltages and system modularity. The conventional parallel inverter usually employes active and reactive power control or frequency and voltage droop control. However, these approaches have the disadvantages that the response time of parallel inverter control is slow against load and system parameter variation to calculate active, reactive power, frequency and voltage. This paper describes a novel control scheme for power equalization in parallel connected inverter. The proposed scheme has a fast power balance control response, a simplicity of implementation, and inherent peak current limiting capability since it employes a instantaneous current/voltage control with output voltage and current balance and output voltage regulation. A design procedure for the proposed parallel inverter controller is presented. Futhermore, the proposed control scheme is verified through the simulation in various cases such as the system parameter variation, the control parameter variation and the nonlinear load condition.

  • PDF

Ni-Tl-P합금피막을 이용한 수처리장치용 정전류소자의 개발 (Development of constant current device for using in the water treatment controller with Ni-Tl-P alloy deposits)

  • 류일광
    • 환경위생공학
    • /
    • 제18권3호통권49호
    • /
    • pp.35-42
    • /
    • 2003
  • The electric resistance and constant current were investigated on the nickel-thallium-phosphorus alloy deposits by electroless-plating. The Ni-Tl-P alloy deposits were achieved with a bath using sodium hypophosphit as the reducing agent and sodium citrate as the comlexing agent. The basic plating solution is composed of 0.1M NiSO$_4$, 0.005${\sim}$0.0IM Tl$_2$S0$_4$, 0.1${\sim}$O.2M sodium hypophosphite and 0.02${\sim}$O.IM sodium citrate and the plating condition were pH 5${\sim}$6, temperrature 80$_4$90${\circ}$C. The results obtained are summarized as follows: 1) The crystal structure of deposit was amorphous structure as deposited state, became microcrystallized centering on Ni(111) plane by heat treatment at 200${\circ}$C, and grew as polycrystalline Ni, Ni$_3$P, Ni$_5$p$_2$,Tl, etc. by heat treatment higher than 350${\circ}$C. The grain size of plated deposits was grown up to 28.3~42.0nm by heat treatment for 1hour at 500${\circ}$C. 2) The electrical resistivity showed a comparatively high value of 192.5$_4$208.3 ${\mu}$${\Omega}$Cm and its thermal stability was great with resistivity value less than 0.22% in the thermal surroundings of 200${\circ}$C. 3) Ni-Tl-P alloy deposit showed such good constant current-making-effect in the variation of electric voltage, heat treatment temperature, and the composition of the deposit that it can be put to practical use as the matter of constant current device.

5kW급 계통연계형 단상 배터리 충전기의 구현 및 실험 (Experiment of Single-phase Grid Connected Battery Charger)

  • 안현성;이우종;문병호;박일규;정선용;김영록;차한주
    • 전력전자학회논문지
    • /
    • 제18권1호
    • /
    • pp.84-90
    • /
    • 2013
  • This paper explains control methods of single-phase grid connected battery charger. Charging mode is control by Constant Current - Constant Voltage method and discharging mode is controlled by active-reactive power control method. Current control method is based on the synchronous reference frame(SRF) PI controller, and the second harmonic of battery current is compensated by an added L-C resonant circuit. Feasibility of the proposed control methods is verified through experiment with a prototype of 5kW single-phase grid connected battery charger.

Individual DC Voltage Balancing Method at Zero Current Mode for Cascaded H-bridge Based Static Synchronous Compensator

  • Yang, Zezhou;Sun, Jianjun;Li, Shangsheng;Liao, Zhiqiang;Zha, Xiaoming
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.240-249
    • /
    • 2018
  • Individual DC voltage balance problem is an inherent issue for cascaded H-bridge (CHB) based converter. When the CHB-based static synchronous compensator (STATCOM) is operating at zero current mode, the software-based individual DC voltage balancing control techniques may not work because of the infinitesimal output current. However, the different power losses of each cell would lead to the individual DC voltages unbalance. The uneven power losses on the local supplied cell-controllers (including the control circuit and drive circuit) would especially cause the divergence of individual DC voltages, due to their characteristic as constant power loads. To solve this problem, this paper proposes an adaptive voltage balancing module which is designed in the cell-controller board with small size and low cost circuits. It is controlled to make the power loss of the cell a constant resistance load, thus the DC voltages are balanced in zero current mode. Field test in a 10kV STATCOM confirms the performance of the proposed method.