• Title/Summary/Keyword: Consolidation.drainage

Search Result 161, Processing Time 0.145 seconds

Axisymmetric Nonlinear Consolidation Analysis for Drainage-installed Deposit Considering Secondary Compression (배수재가 설치된 연약지반의 2차압축을 고려한 축대칭 비선형 압밀해석)

  • Kim Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.133-140
    • /
    • 2005
  • In order to accelerate the rate of consolidation settlement and gain a required shear strength for a given soft clay deposit, vertical drain method combined with a preloading technique has been widely applied. In this paper, a theory of axisymmetric nonlinear consolidation fer drainage-installed deposit, which considers secondary compression (or creep) during primary consolidation, as well as the variations of compressibility and permeability during the consolidation process, has been developed. A computer program named AXICON based on Hypothesis B fur the analysis of axisymmetric nonlinear consolidation was developed by adopting finite difference method. The results of AS(ICON were compared with Hansbo's solution based on Hypothesis A, as well as in-situ settlements and pore pressures measured in test embankment of Ska-Edeby. The results indicated that Hypothesis A usually underestimated the in-situ settlement and Hypothesis B was considered to be logically correct. It was also shown that one may able to appropriately predict the real in-situ behaviors using the proposed program.

Nonlinear Consolidation Model Using an Extended Power Function (확장멱함수모형을 이용한 비선헝 압밀속도 모형의 개발)

  • 원정윤;장병욱
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.181-190
    • /
    • 1998
  • One-Dimensional Nonlinear Consolidation Model(NCM) ivas developed by using an Extended Power Function Model, which could represent the compressibility of soils. A nonlinear finite element program for NCM was developed to analyze the porewater pressure dissipation and the settlement of saturated soils. Parameters used in compressibility model could be easily obtained from conventional oedometer test data. This model has been applied to Yansan-Mulgum area for the comparison with the results of CONSOL program and that of Terzaghi theory. A Good The rates of consolidation predicted by this model and CONSOL were faster than that of conventional Tergaghi theory, for they consider the nonlinear characteristics of soils. Consolidation curves of this model were located between Terzaghi and CONSOL curves. Consolidation curves near drainage boundary, where effective stress valied rapidly, seemed to reflect the variations of compressibility of sails. Consolidation curves near drainage boundary obtained from this model were composed of two parabolic curves. Intersection of the parabolic curves occurred when effective stress reached the value of preconsolidation stress. Moreover, thin model could be used to represent the effect of magnitude of applied load. whereas CONSOL and Terazghi theory could not.

  • PDF

A Study on the experimental estimation of substitutability of Fiber Mat for Sand Mat (Fiber Mat 의 Sand Mat 대체가능성평가를 위한 실험적 연구)

  • Lee, Song;Jeong, Yong-Eun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.280-285
    • /
    • 2005
  • At present, there are several problems related with sand mat which is used as a way to accelerate consolidation settlement, act like an underground drainage layer and increase trafficability simultaneously. First of all, the unbalance oft he demand and supply of sand is the one of the biggest problems, which makes not only price advance of sand but also delays a term of total construction work. Secondly, the damage of ecosystem and scenery is triggered by thoughtless sand dredging or mining. So, the need that the sand for sand mat should be replaced with a new environmental friendly material has been increased. Fiber mat may be one of the proper materials that suits the need. Therefore, we intended to compare the drainage properties of sand mat with those of fiber mat by experimental model tests. On the basis of the test results, fiber mat took shorter period of consolidation than sand mat and it's amount of settlement showed a little bit bigger than the other. In conclusion, the substitutability of fiber mat for sand mat could be placed highly in view of drainage efficiency. Furthermore, when Fiber mat is used, it has an advantage that spoil soil of the construction site or nearby site can be used for the purpose of increasing trafficability in addition to a role of drainage layer.

  • PDF

A Study on Ecological Changes of naturally favorable Consolidated channel (자연친화적 정비수로의 생태변화에 관한 연구)

  • Kim, Sun-Joo;An, Min-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.236-240
    • /
    • 2001
  • When we make on irrigation and drainage canals, the environment should be preferentially taken into consideration. The purpose of this study is to test Close-to-nature Consolidation Techniques in the drainage canals of Samsungri, Kanam-myun, Yeoju-gun, Kyunggi-do. The monitoring and assessment of these techniques has been conducted during two years, focuesed the drainage canals ecological habitat and landscape. As the result of this study, the embankment covered with Close-to-nature Consolidation Techniques played an important role as a habitat for aquatic animal, fish and birds as well as the groth emergement plant.

  • PDF

Consolidation and Design of Naturally Favorable Irrigation Canals (용수로의 자연친화적 정비 및 설계)

  • Kim, Sun-Joo;Yang, Yong-Seok;An, Min-Woo
    • Journal of Korean Society of Rural Planning
    • /
    • v.8 no.2 s.16
    • /
    • pp.50-56
    • /
    • 2002
  • In 1980s, studies on the river environment and the management techniques to maintain the quality of water achieved actively. From the beginning of 1990s, the concept considering the river ecology and conservation in urban area have been introduced in Korea. Recently, some environment friendly projects on the rivers have been executed and some are under way. Many small rivers in rural areas have been maintained considering landscape and partly ecology. However until the pilot project named Songsam drainage channel project started in 1998, there were no studies and projects on the irrigation and drainage channels considering environment friendly maintenance. Korea Agricultural and Rural Infrastructure Corporation (KARICO) is going to introduce environment friendly and naturally favorable maintenance technique when the new projects to reform the irrigation and drainage channels are planned. Irrigation channel in O-dong project site in Yeomsan-myeon, Younggwang-gun was designed considering environment friendly consolidation and maintenance.

Application of Prefabricated Horizontal Drains to Marine Clayey Soils (해안상의 토목섬유 수평배수재의 적용)

    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.329-336
    • /
    • 1998
  • Sandmats are used to dissipate trapped water rapidly from the embankment built on marine soft ground. At present, however, it becomes difficult to obtain qualified sands since natural resources such as river sand are to exhausted. Also, low permeability of sand may cause low degree of consolidation and instability of embankment. In this study, design and construction methods was discussed. Drainage capacities of prefabricated horizontal drains which were installed in highway construction site are investigated in order to find possible substitution for river sands as drainage materials. On the basis of measurement data at the construction site, it was concluded that use of the prefabricated horizontal drains shows satisfactory drainage capacity without instability of embankment.

  • PDF

Practical Consolidation Analysis and Back Analysis for Draainage-Installed Compressible Deposits (배수재가 설치된 압축성 지반의 효율적인 압밀해석 및 역해석)

  • 김윤태;이승래
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.175-181
    • /
    • 1994
  • In order to accelerate the rate of consolidation settlement and to gain a required shear strength for a given soft clay deposit, the preloading technique combined with a vertical drainage system has been widely applied. In this study, the theory of axisymmetric concolidation, which considers the variation of compressibility and permeability during the consolidation process, has been developed. Smear and well resistance effects are also considered. Furthermore, several back-analysis schemes such as simplex method, BFGS method, and ADS have been adopted in the axisymmetric consolidation program(AXICON). The measured data in the first stage of consolidation are utilized to predict the subsequent consolidation behavior.

  • PDF

A Study on the PVDs Consolidation Degree Considering In-Situ Conditions (현장조건을 고려한 PVDs의 압밀도 산정에 관한 연구)

  • Shin, Eun-Chul;Park, Jeong-Jun;Kwon, Hyeung-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.824-827
    • /
    • 2006
  • The Prefabricated Vertical Drains (PVDs) method is one of the most widely used techniques to accelerate the consolidation process in-situ and hence increase its bearing capacity. In this paper, the degree of consolidation incorporated with PVDs was evaluated in O construction work site which composed with dredged soil. O Program PVD(Version 2.3) which developed by Asian Institute of Technology was used. The purpose of this analysis is efficiently to estimate the degree of consolidation by analyzing the surface settlement with time, and drainage at initial stage and final stage by using design-parameter which based on the in-situ tests and laboratory tests. This result can be compared with analysis of the degree of consolidation using Program PVD(Version 2.3) and the field observed data in the future studies.

  • PDF

Significance of Ground Water Movements in the Numerical Modelling of Tunnelling (터널해석에 있어 지하수 거동의 중요성)

  • 신종호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.257-264
    • /
    • 2003
  • Tunnelling in water bearing soils influences the ground water regime. It has been indicated in the literature that the existence of ground water above a tunnel influences tunnel stability and the settlement profile. Only limited research, however, has been done on ground water movements around tunnels and their influence on tunnel performance. Time dependent soil behaviour can be caused by the changes of pore water pressure and/or the viscous properties of soil(creep) under the stress change resulting from the advance of the tunnel face. De Moor(1989) demonstrated that the time dependent deformations due to tunnelling are mainly the results of pore pressure dissipation and should be interpreted in terms of effective stress changes. Drainage into tunnels is governed by the permeability of the soil, the length of the drainage path and the hydraulic boundary conditions. The potential effect of lime dependent settlement in a shallow tunnel is likely to occur rapidly due to the short drainage path and possibly high coefficient of consolidation. Existing 2D modelling methods are not applicable to these tunnelling problems, as it is difficult to define empirical parameters. In this paper the time-based 2D modelling method is adopted to account for the three dimensional effect and time dependent behaviour during tunnel construction. The effect of coupling between the unloading procedure and consolidation during excavation is profoundly investigated with the method. It is pointed out that realistic modelling can be achieved by defining a proper permeability at the excavation boundary and prescribing appropriate time for excavation Some guidelines for the numerical modelling of drained and undrained excavation has been suggested using characteristic time factor. It is highlighted that certain range of the factor shows combined effect between the unloading procedure due to excavation and consolidation during construction.

  • PDF