Axisymmetric Nonlinear Consolidation Analysis for Drainage-installed Deposit Considering Secondary Compression

배수재가 설치된 연약지반의 2차압축을 고려한 축대칭 비선형 압밀해석

  • Published : 2005.04.01

Abstract

In order to accelerate the rate of consolidation settlement and gain a required shear strength for a given soft clay deposit, vertical drain method combined with a preloading technique has been widely applied. In this paper, a theory of axisymmetric nonlinear consolidation fer drainage-installed deposit, which considers secondary compression (or creep) during primary consolidation, as well as the variations of compressibility and permeability during the consolidation process, has been developed. A computer program named AXICON based on Hypothesis B fur the analysis of axisymmetric nonlinear consolidation was developed by adopting finite difference method. The results of AS(ICON were compared with Hansbo's solution based on Hypothesis A, as well as in-situ settlements and pore pressures measured in test embankment of Ska-Edeby. The results indicated that Hypothesis A usually underestimated the in-situ settlement and Hypothesis B was considered to be logically correct. It was also shown that one may able to appropriately predict the real in-situ behaviors using the proposed program.

연약지반에서 압밀속도를 가속화시키고 설계 전단강도를 얻기 위하여 선행압밀공법과 병행된 연직배수공법이 널리 사용되어 왔다. 본 연구에서는 배수계가 설치된 연약지반에서 압밀과정 동안에 간극비의 감소로 인한 압축성과 투수계수의 변화를 고려할 뿐만 아니라 1차압밀 동안에 유발되는 2차압밀(혹은 크리프)을 고려할 수 있는 축대칭 비선형 압밀이론이 개발되었다. 측대칭 비선형 압밀해석을 위한 수치해석 프로그램, AXICON은 가정 B를 바탕으로 유한차분법을 적용하여 개발되었다. 가정 A를 바탕으로 한 Hansbo의 해석적인 해와 AXICON 해석결과를 비교$\cdot$분석하였다. 또한 Ska-Edeby 시험성토 현장지반에서 관측된 침하량과 간극수압의 계측자료와 비교하였다. 해석결과에 의하면 가정 A는 현장침하량을 일반적으로 과소 평가하며, 가정 B가 논리적으로 타당하다. 또한 제안된 해석 프로그램을 사용하면 실제 현장의 거동을 잘 예측할 수 있다.

Keywords

References

  1. 김윤태, Leroueil, S. (1999), 자연점토의 변형률속도 의존적인 압밀거동의 해석, 지반공학회 논문집, 제15권 제6호, 1999년 12월, pp.17-28
  2. 정성교 (1999), 낙동강 하구 점토의 압밀특성, 연약점토지반에 관한 국제 심포지움,동아대학교
  3. Hansbo, S. (1960), 'Consolidation of Clay with Special Reference to Influence of Vertical Sand Drains', Proc. Swedish Geotechnical Institute, No.18, 160pp
  4. Jamiolkowski, M., Ladd, C. C., Germaine, J. T., and Lancelotta, R. (1985), 'New developments in field and laboratory testing of soils', General report, Proc. 11th ICSMFE, San Francisco, Vol.1, pp.57-153
  5. Kim, S. K. (1999), 'Large consolidation settlement occurred during reclamation works in the Nakdong river mouth', Proceeding of '99 Dredging and Geoenvironmental Conference, Seoul, Korea, pp.35-48
  6. Ladd, C. C., Foott, R., Ishihara, K., Schlosser, F. & Poulos, H. J. (1977), 'Stress-deformation and strength characteristics', Proc. 9th ICSMFE, Tokyo, pp.421-494
  7. Leroueil, S. and Marques M. E. S. (1996), 'Importance of Strain Rate and Temperature effects in Geotechnical Engineering: State of the Art', ASCE Convention, Washington, D.C
  8. Leroueil, S. and Kabbaj, M., Tavenas, F., and Bouchard, R. (1985), 'Stress-strain-strain rate relation for the compressibility of natural sensitive clays', Geotechnique, 35(2), 159-180 https://doi.org/10.1680/geot.1985.35.2.159
  9. Lo, D. O. K (1991), 'Soil Improvement by vertical drains', Ph.D. thesis, Univ. of Illinois, pp.1-279
  10. Mesri, G. and Rokhsar, A. (1974), 'Theory of consolidation of soils', J. Soil Mech. Found. Eng., ASCE, Vol.100, GT8, pp.889-904
  11. Mesri, G. and Choi, Y. K. (1985a), 'Settlement Analysis of Embankments on Soft Clay', J. Geotech. Engrg., ASCE, 111(4), pp.441-464 https://doi.org/10.1061/(ASCE)0733-9410(1985)111:4(441)
  12. Mesri, G. and Choi, Y. K. (1985b), 'The uniqueness of end of primary (EOP) void ratio effective stress relationship', Proc. 11th ICSMFE, San Francisco, pp.587-590
  13. Mesri, G., Lo, D. O. K. and Feng, T. W. (1994), 'Settlement of Embankments on Soft Clays', Geotechnical Special Publication, No.40, pp.8-56
  14. Yin, J. H. (2003), 'A simplified method for calculation of settlements of soils with creep based on Hypothesis B', 12th Asian Regional Conf. on Soil Mechanics & Geotechnical Engineering, Vol.1, pp.681-684