• Title/Summary/Keyword: Conger

Search Result 113, Processing Time 0.034 seconds

Studies in Browning Reaction in Dried Fish Lipid Oxidative Browning in Dried Conger eel and Properties of Browning Products (수산건제품의 갈변에 관한 연구 붕장어육 및 유의 산화, 갈변 물질의 성상)

  • SUH Jae-Soo;LEE Kang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.5
    • /
    • pp.454-461
    • /
    • 1994
  • This studies was carried out in order to investigate the browning reaction of lipid originated compound with nitrogenous compound in dried conger eel. The major fatty acids were $C_{16:0},\;C_{16:1},\;C_{18:1},\;C_{20:5}\;and\;C_{22:6}$. The nonpolar lipid contained the highest percentage of $C_{16:0}$, while the polar lipid contained the highest percentage of $C_{22:6}$. The browning reaction there was a rapidly developed with the beginning of the decline in carbonyl value and remarkable decrease in polyunsaturated fatty acids such as $C_{20:5},\;C_{22:5},\;C_{22:6}$ compared with the other fatty acid, in the water soluble fraction of the browning product obtained from tile fish was detected some antioxidation activity but in the lipid soluble fraction which covers most of the browning reactions in the fish meat antioxidation activity was not detected. In the test of conger eel oil, the phosphatidylcholine was largest in quantity and browning products provided in this experiment showed very low reducing activity.

  • PDF

Quality Properties of Conger Eel (Conger myriaster) Oils Extracted by Supercritical Carbon Dioxide and Conventional Methods (초임계 이산화탄소 및 유기용매를 이용하여 추출된 붕장어(Conger myriaster) 오일의 품질특성)

  • Park, Jin-Seok;Cho, Yeon-Jin;Jeong, Yu-Rin;Chun, Byung-Soo
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.275-282
    • /
    • 2019
  • In this study, the extraction of Conger myriaster oil by using supercritical carbon dioxide (SC-CO2) and organic solvent was investigated. The extraction conditions conducted for SC-CO2 varied for pressure (25, 30 MPa) and temperature (45, 55 ℃), while the SC-CO2 flow rate was kept constant during the experiment (27 g min-1) and hexane was used as a conventional organic solvent. The extraction yield indicated that the best extraction condition would be SC-CO2 at 55 ℃ and 30 MPa, resulting in the highest yield of 37.73 ± 0.14%. The oils were characterized for their fatty acid (FAs) composition using gas chromatography, while it was revealed that the major FAs were mystric acid, palmitoleic acid, oleic acid, electroosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). The oxidation stability of the extracted C. myriaster oil was evaluated by measuring the acid value, peroxide value, and free fatty acid. The best oxidative stability was obtained from SC-CO2 extracted oil at 30 MPa and 55 ℃. There was a significant difference in the color properties of the SC-CO2 and hexane extracted oils, with the SC-CO2 extracted oil showing better chromaticity than the oil extracted using hexane. Extracting oils from C. myriaster with SC-CO2 could bring better economic benefits than using organic solvents. When supercritical carbon dioxide was used, there was no post-treatment process; thus, it was confirmed that this is a more environmentally friendly oil extraction method.

Processing of Enzymatic Hydrolysates from Conger eel Scrap (붕장어 가공잔사를 이용한 효소분해소재의 가공)

  • Kang Su Tae;Kong Chung Sik;Cha Yong Jun;Kim Jong Tae;Oh Kwang Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.3
    • /
    • pp.259-264
    • /
    • 2002
  • In order to develope nutritional and flavoring intermediate products, the optimal processing conditions for two stage enzyme hydrolysate (TSEH) from low-utilized conger eel scrap such as head and intestine were investigated. The optimal processing conditions for TSEH were revealed in temperature at $55^{\circ}C$ 3$\~$4 hours digestion with alcalase at the 1st stage, and 4 hours at $45{\~}50^{\circ}C$ digestion with neutrase at the 2nd stage. Among water extract, steam extract and enzyme hydrolysates of conger eel scrap, the present TSEH was superior to other extracts in terms of yield ana organoleptic taste such as harmonic umami and inhibition of fishy and greasy taste formation. From the results of chemical experiments and sensory evaluation, we may conclude that TSEH of conger eel scrap could be utilized as the flavoring intermediate materials for the fisheries products such as flavoring sauces, drinkable beverage and instant food materials.

Screening for raw material of modified gelatin in marine animal skins caught in coastal offshore water in Korea (수식 어류껍질 젤라틴의 원료로서 연근해산 수산물껍질의 검색)

  • Cho, Soon-Yeong;Kim, Jin-Soo
    • Applied Biological Chemistry
    • /
    • v.39 no.2
    • /
    • pp.134-139
    • /
    • 1996
  • In order to effectively utilize marine animal skin wastes in marine processing manufacture, conger eel skin, file fish skin and arrow squid skin as raw material of edible gelatin were screened. Conger eel skin was the highest in the collagen content, followed by Ole fish skin and arrow squid skin, in the order named. In the fish skins, the soluble and insoluble collagens occupied $67.4%{\sim}72.3%\;and\;27.7{\sim}32.6%$, respectively, and in the arrow squid skin, 30.4ft and 69.6ft, respectively. No difference in the amino acid composition between soluble and insoluble collagens was detected. Collagen from the marine animal skin catched in coasted and offshore water in Korea consisted ${\alpha}$ chain and ${\beta}$ chain, and ${\alpha}$ chain were hetero type. The sum of proline and hydroxyproline contents in conger eel skin collagen was higher than that in the other skin collagens, while was lower than that pork skin collagen. Conger eel skin collagen exhibited a higher denaturation temperature in solution and a higher degree of proline hydroxylation, compared with skin collagen of the respective species. The physical properties such as gel strength, melting point and gelling point of conger eel skin gelatin were superior to those of file fish skin and arrow squid skin gelatins.

  • PDF

Preparation and properties of gelatin from conger eel skin (붕장어껍질로부터 젤라틴의 제조 및 그 특성)

  • Ihm, Chi-Won;Kim, Poong-Ho;Kim, Jin-Soo
    • Applied Biological Chemistry
    • /
    • v.39 no.4
    • /
    • pp.274-281
    • /
    • 1996
  • To prepare edible skin gelatin of conger eel such as material fur quality improvement of surimi gel, the defatted skin was limed with 1% calcium hydroxide at $5^{\circ}C$ for 2 days, washed thoroughly with tap water, extracted with 8 volumes of distilled water to dehydrated skin for 2 hours at $50^{\circ}C$. The gelatin extract was centrifuged, filtered and then passed through anion(Amberlite 200C) and cation (Amberlite IR 900) resins. The purified gelatin solution was evaporated and dried by hot-air blast$(40^{\circ}C)$. The gelatin prepared by above condition had the highest quality as revealed by physical property values i.e. 240.5 g in gel strength, $28.0^{\circ}C$ in melting point and $28.0^{\circ}C$ in gelling point. Funtional property values were 56.8% in solubility, 1.8 ml/g in oil binding capacity, 55.0% in emulsifying capacity and 48.5% in emulsifying stability. jelly strength and senso교 evaluation of surimi gel from fish with red muscle were not improved by addition of emulsifying curd from conger eel skin gelatin as emulsifier. Therefore, the conger eel skin gelatin requires a suitable modification of functional group and improvement of processing operation to utilize as a material for quality Improvement of surimi gel.

  • PDF

Preparation and Characteristics of Snack Using Conger Eel Frame (붕장어 Frame을 이용한 스낵의 제조 및 특성)

  • Kim, Hye-Suk;Kang, Kyung-Tae;Han, Byung-Wook;Kim, Eun-Jung;Heu, Min-Soo;Kim, Jin-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.10
    • /
    • pp.1467-1474
    • /
    • 2006
  • Fish-frames, which are left after obtaining fillets or muscle during fish processing, consists of useful food components, such as muscle, collagen, calcium, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). This study was carried out to prepare snack using conger eel frame (SF) for human consumption and also to elucidate food component characterization of the snack. The results of volatile basic nitrogen suggested that conger eel frame was a suitable material for preparing snack. Based on the results of sensory evaluation and costs, starch syrup was an optimal sweetener for preparing snack using conger eel frame. The starch syrup-treated SF appeared safe because the moisture content and peroxide value were below the safety limits described in the guideline of Korea Food and Drug Administration (KFDA). Starch syrup-treated SF was similar in the pattern of fatty acid composition to soybean oil, whereas EPA and DHA were detected in SF. The total content of amino acid in starch syrup-treated SF was 23.9% based on 100 g of raw material. The maj or amino acids were aspartic acid, glutamic acid, glycine and alanine. The total contents of calcium and phosphorus in starch syrup-treated SF were 4.9% and 2.8%, respectively. The Ca/P of starch syrup-treated SF was 1.9, which is a good ratio for absorption of calcium. The SF made with starch syrup was superior in EPA and DHA compositions, total amino acid, calcium and phosphorus contents to commercial snack using eel frame.

CONDITIONS FOR CONGER EEL AND HAGFISH SKIN GLUE PROCESSING AND THE QUALITY OF PRODUCT (붕장어피 및 먹장어피를 이용한 피교의 가공조건에 제품의 성상)

  • LEE Eung-Ho;KIM Se-Kwon;CHO Duck-Jae;KIM Jin-Dong;no Sudibjo;KIM Soo-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.11 no.4
    • /
    • pp.189-195
    • /
    • 1978
  • Using the skins of conger eel, Astroconger myriaster, and hagfish, Eptatretus burzeri, from fillet manufactory, the optimum conditions of skin glue processing were investigated and physical ana chemical properties of the product were also determined. The yields of conger eel and hagfish skin to the total body weight were $10.6\%$ and $11.4\%$, respectively. The optimum processing conditions for conger eel skin glue were the extraction of skins which were previously tinted with $0.3\%$ calcium hydroxide solution for one hour, in water at pH 5.5 and $60^{\circ}C$ for four hours. The additional water was six times sample weight. In case of the hagfish skin glue, the liming time with $0.3\%$ calcium hydroxide solution was suitable for three hours, and the skins were extracted with water as much as nine times sample weight at pH 5.0 and $60^{\circ}C$ for three hours. The contents of crude protein of conger eel and hagfish skin glue were $91.5\%$ and $90.2\%$, respectively. The content of crude lipid was slightly higher than that of chemical grade gelatin. Relative viscosity, melting point, gelation temperature and jelly strength of conger eel skin glue were 13.6, $15.2^{\circ}C$, $6.2^{\circ}C$ and 13.0g respectively and those of hagfish skin glue were 12.9, $14.8^{\circ}C$, $4.3^{\circ}C$ and 23.3g respectively. The turbidity of conger eel skin glue and hagfish skin glue were slightly superior to those of dry glue.

  • PDF

Effect of Partial Freezing as a Means of Keeping Freshness II. Changes in Freshness and Gel Forming Ability of Conger Eel and Yellowtail during Storage by Partial Freezing (Partial Freezing에 의한 어육의 선도유지 효과에 대하여 2. Partial Freezing에 의한 붕장어 및 방어의 선도 및 어묵형성능의 변화)

  • LEE Yong-Woo;PARK Yeung-Ho;AHN Cheol-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.1
    • /
    • pp.27-35
    • /
    • 1986
  • In succession to the previous paper, the present study was directed to investigate the effect of keeping freshness of conger eel (Astroconger myriaster) and yellowtail (Seriola quinqueradiata) by partial freezing, and the changes in the physical properties of fish meat paste product prepared with the muscle of conger eel during storage were also examined. The results obtained are summarized as follows: The period of keeping freshness (days in which k value reaches $20\%$) of conger eel and yellowtail by partial freezing was 10 days and 6 days, respectively. VBN content in the conger eel muscle showed 39.5 mg/100g by icing for 15 days, and did not show a great change by partial freezing and freezing, while that of yellowtail muscle reached at 32 mg/100g by icing, 20 mg/100g by partial freezing and 18 mg/100g by freezing for 15 days. The lipids extracted from the muscles of both fishes by icing were remarkably oxidized than those by partial freezing. The myofibrillar protein in the conger eel muscle during storage for 9 days decreased $3\%,\;10%\;and\;11\%$ by icing, partial freezing and freezing, respectively, and that of yellowtail muscle did $16\%,\;10%\;and\;4\%$ by icing, partial freezing and freezing, respectively. On the other hand, the alkali-soluble protein in both fishes increased with storage time. Gel strength of fish meat paste product prepared with the muscle of conger eel decreased to $35\%$ by icing, $74\%$ by partial freezing and $76\%$ by freezing for 10 days compared to control, and the expressible water increased 1.6 times, 1.2 times and 1.1 times by icing, partial freezing and freezing, respectively, as much as that of control product.

  • PDF

Benzopyrene에 노출된 광어(Conger myriaster) 혈액 cells과 개조게(Saxidomus purpurata) 조직 cells을 이용한 in vivo DNA single strand breakage

  • 김소정;오로라;하병혁;최은석;장만;이택견
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2002.11a
    • /
    • pp.145-153
    • /
    • 2002
  • 유해 화학 물질류에 의해 오염된 해양 환경 시료의 환경독성 수준을 평가하기 위하여 다양한 화학물질에 대해 민감성이 우수한 생물학적 독성평가기법을 개발 하고자하였다. 지속성 유기오염 물질 중 다환 방향 족 탄화수소(PAHs)를 처리한 광어(Conger myriaster)와 개조개(Saxidomus pupurata)의 DNA 손상정도를 single cell gel electrophoresis assay(comet assay)를 통해 분석하였다. PAHs 중 광양만에서 높은 농도로 검출되는 benzo(a)pyrene을 농도별(0, 10, 50, 100 ppb)로 처리한 후 2일과 4일에 광어의 혈액세포와 개조개의 근육세포를 채취해 comet assay를 실시하였다. benso(a)pyrene에 대한 DNA 손상정도를 처리된 농도와 생물종에 따라 다르게 나타났는데 광어의 혈액세포는 2일에 가장 DNA 손상정도가 높았고, 4일에는 회복되는 경향을 나타냈다. 개조개의 근육세포는 시간이 지나면서 DNA 손상정도가 증가하는 경향을 보였다. 이와 같은 결과는 comet assay 기법이 유해 화학물질로 오염된 해양생물 종의 환경독성을 검색하는 유용한 수단이 될 수 있음을 보여준다.

  • PDF