DOI QR코드

DOI QR Code

Quality Properties of Conger Eel (Conger myriaster) Oils Extracted by Supercritical Carbon Dioxide and Conventional Methods

초임계 이산화탄소 및 유기용매를 이용하여 추출된 붕장어(Conger myriaster) 오일의 품질특성

  • Park, Jin-Seok (Department of Food Science and Technology, Pukyong National University) ;
  • Cho, Yeon-Jin (Department of Food Science and Technology, Pukyong National University) ;
  • Jeong, Yu-Rin (Department of Food Science and Technology, Pukyong National University) ;
  • Chun, Byung-Soo (Department of Food Science and Technology, Pukyong National University)
  • Received : 2019.10.29
  • Accepted : 2019.11.14
  • Published : 2019.12.31

Abstract

In this study, the extraction of Conger myriaster oil by using supercritical carbon dioxide (SC-CO2) and organic solvent was investigated. The extraction conditions conducted for SC-CO2 varied for pressure (25, 30 MPa) and temperature (45, 55 ℃), while the SC-CO2 flow rate was kept constant during the experiment (27 g min-1) and hexane was used as a conventional organic solvent. The extraction yield indicated that the best extraction condition would be SC-CO2 at 55 ℃ and 30 MPa, resulting in the highest yield of 37.73 ± 0.14%. The oils were characterized for their fatty acid (FAs) composition using gas chromatography, while it was revealed that the major FAs were mystric acid, palmitoleic acid, oleic acid, electroosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). The oxidation stability of the extracted C. myriaster oil was evaluated by measuring the acid value, peroxide value, and free fatty acid. The best oxidative stability was obtained from SC-CO2 extracted oil at 30 MPa and 55 ℃. There was a significant difference in the color properties of the SC-CO2 and hexane extracted oils, with the SC-CO2 extracted oil showing better chromaticity than the oil extracted using hexane. Extracting oils from C. myriaster with SC-CO2 could bring better economic benefits than using organic solvents. When supercritical carbon dioxide was used, there was no post-treatment process; thus, it was confirmed that this is a more environmentally friendly oil extraction method.

본 연구는 초임계 이산화탄소 및 유기용매를 이용하여 동결건조된 붕장어로부터 초임계 이산화탄소 및 유기용매를 이용하여 오일을 추출하고 그 특성을 파악하였다. 초임계 이산화탄소의 경우 압력(25, 30 MPa) 및 온도(45, 55 ℃) 조건을 변화시켜 실험을 수행하였으며, 초임계 이산화탄소의 유량(27 g min-1)은 실험 중 일정하게 유지되었다. 유기용매로는 헥산(hexane)을 사용하였다. 오일 추출 수율의 경우 55 ℃, 30 MPa에서 추출한 오일이 37.73 ± 0.14%로 가장 높은 수율을 나타내었다. 추출된 오일의 지방산 조성은 가스 크로마토그래피를 이용하여 분석하였으며, mystric acid, palmitic acid, palmitoleic acid, oleic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA)가 붕장어 오일의 주요 지방산으로 확인되었다. 산가, 과산화물가 및 유리지방산을 측정함으로써 추출된 붕장어 오일의 산화 안정성을 평가하였으며, 55 ℃, 30 MPa에서 추출한 오일로 부터 최상의 산화 안정성을 확인하였다. 소비자들의 선호도에 직접적인 영향을 끼치는 색도의 경우는 초임계 이산화탄소를 통해 추출된 오일이 유기용매를 이용하여 추출된 오일보다 뛰어난 색도를 나타냄을 확인할 수 있었다. 붕장어로부터 초임계 이산화탄소를 이용하여 오일을 추출하게 되면 유기용매를 사용한 방법보다 더 나은 경제적 이익을 가져올 수 있으며, 초임계 이산화탄소를 이용할 경우 후처리 공정이 없기 때문에 더 친환경적인 오일의 추출법임을 확인하였다.

Keywords

References

  1. Lee, E., Kim, S., and Cho, G., "Nutritional Component and Health in the Fishery Resources of the Coastal and Offshore Waters in Korea" (1977).
  2. Kim, Y., Myoung, J., Kim, Y., Han, K., Kang, C., Kim, J., and Ryu, J., The marine fishes of Korea. Hanguel, Pusan. Vol. 222. 2001.
  3. Choi, J.-H., Rhim, C.-H., Bae, T.-J., Byun, D.-S., and Yoon, T.-H., "Comparison of Lipid Components among Wild and Cultured Eel (Anguilla japonica), and Conger Eel (Astroconger myriaster)". Bull. Korean Fish. Soc., 18: 439-446 (1985).
  4. Ryu, K.-Y., Shim, S.-L., Kim, W., Jung, M.-S., Hwang, I.-M., Kim, J.-H., Hong, C.-H., Jung, C.-H., and Kim, K.-S., "Analysis of the Seasonal Change of the Proximate Composition and Taste Components in the Conger Eels (Conger myriaster)". J. Korean Soc. Food Sci. Nutr., 38(8): 1069-1075 (2009). https://doi.org/10.3746/jkfn.2009.38.8.1069
  5. Kim, J.-S., Oh, K.-S., and Lee, J.-S., "Comparison of Food Component between Conger Eel (Conger myriaster) and Sea Eel (Muraenesox cinereus) as a Sliced Raw Fish Meat". Kor. J. Fish Aquat. Sci., 34(6): 678-684 (2001).
  6. Ranathunga, S., Rajapakse, N., and Kim, S.-K., "Purification and Characterization of Antioxidative Peptide Derived from Muscle of Conger Eel (Conger myriaster)". Eur. Res. Technol., 222(3-4): 310-315 (2006). https://doi.org/10.1007/s00217-005-0079-x
  7. Heu, M.-S., Lee, T.-S., Kim, H.-S., Jee, S.-J., Lee, J.-H., Kim, H.-J., Yoon, M.-S., Park, S.-H., and Kim, J.-S., "Food Component Characteristics of Tang from Conger Eel by-products". J. Korean Soc. Food Sci. Nutr., 37(4): 477-484 (2008). https://doi.org/10.3746/jkfn.2008.37.4.477
  8. Kang, S.-T., Kong, C.-S., Cha, Y.-J., Kim, J.-T., and Oh, K.-S., "Processing of Enzymatic Hydrolysates from Conger Eel Scrap". Kor. J. Fish Aquat. Sci., 35(3): 259-264 (2002). https://doi.org/10.5657/KFAS.2002.35.3.259
  9. Kim, H.-Y., and Lim, Y.-i., "Studies on Quality Changes of Ready-Prepared Conger Eel Products Adding Ginseng and Pine Mushroom during Storage and Sterilization". Korean J. Food Cook Sci., 19(3): 396 (2003).
  10. Yoo, B.-S., Lee, H.-J., Ko, S.-R., Yang, D.-C., and Byun, S.-Y., "Studies on the Extraction of Polyacetylene from Korean Ginseng using Supercritical Carbon Dioxide". Korea T. Biotechnol. Bioeng., 15(1): 80-83 (2000).
  11. Joung, S.-N., Kim, S.-Y., and Yoo, K.-P., "Ultra Dry-Cleaning Technology using Supercritical Carbon Dioxide". Clean Technol., 7(1): 13-25 (2001).
  12. Turner, C., King, J. W., and Mathiasson, L., "Supercritical Fluid Extraction and Chromatography for Fat-Soluble Vitamin Analysis". J. Chromatogr A., 936(1-2): 215-237 (2001). https://doi.org/10.1016/S0021-9673(01)01082-2
  13. Chun, B.-S., "Extraction and Fractionation of Lipids from Squid Internal Organs using Supercritical Carbon Dioxide with Entrainer" Published: Institut National Polytechnique
  14. Kang, K.-Y., Ahn, D.-H., Wikinson, G. T., and Chun, B.-S., "Extraction of Lipids and Cholesterol from Squid oil with Supercritical Carbon Dioxide". Korean J. Chem. Eng., 22(3): 399-405 (2005). https://doi.org/10.1007/BF02719418
  15. Timon, M., Ventanas, J., Martin, L., Tejeda, J., and Garcia, C., "Volatile Compounds in Supercritical Carbon Dioxide Extracts of Iberian Ham". J. Agr. Food Chem., 46(12): 5143-5150 (1998). https://doi.org/10.1021/jf980652v
  16. Taylor, D. L., and Larick, D. K., "Investigations into the Effect of Supercritical Carbon Dioxide Extraction on the Fatty Acid and Volatile Profiles of Cooked Chicken". J. Agr. Food Chem., 43(9): 2369-2374 (1995). https://doi.org/10.1021/jf00057a010
  17. Kim, H.-S., Lee, S.-Y., Kim, B.-Y., Lee, E.-K., Ryu, J.-H., and Lim, G.-B., "Effects of Modifiers on the Supercritical $CO_2$ Extraction of Glycyrrhizin from Licorice and the Morphology of Licorice Tissue after Extraction". Biotechnol Bioproc. E., 9(6): 447-453 (2004). https://doi.org/10.1007/BF02933484
  18. Woolfenden, E. A., and McClenny, W. A., "Determination of Volatile Organic Compounds in Ambient Air using Active Sampling onto Sorbent Tubes". Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Compendium Method TO-17: (1999)
  19. Bligh, E. G., and Dyer, W. J., "A Rapid Method of Total Lipid Extraction and Purification". Can. J. Biochem. Phys., 37(8): 911-917 (1959). https://doi.org/10.1139/o59-099
  20. Haq, M., Getachew, A. T., Saravana, P. S., Cho, Y.-J., Park, S.-K., Kim, M.-J., and Chun, B.-S., "Effects of Process Parameters on EPA and DHA Concentrate Production from Atlantic Salmon by-product Oil: Optimization and Characterization". Korean J. Chem. Eng., 34(8): 2255-2264 (2017). https://doi.org/10.1007/s11814-016-0362-5
  21. William, H., Official methods of analysis of rnational. AOAC official method. 2000.
  22. AOCS, "AOCS official method Ce 2-66: Preparation of methyl esters of fatty acids". Official methods and recommended practices of the AOCS (2017).
  23. AOCS, "Official method Cd 3d-63: acid value" (1999).
  24. Firestone, D., "AOCS Official Method Cd 8-53: Peroxide Value-Acetic Acid-Chloroform Method". AOCS Cd: 8-53 (2009).
  25. Society, A. O. C., AOCS Official Method. AOCS official method. 2009: AOCS.
  26. Lee, B. C., Kim, J. D., Hwang, K. Y., and Lee, Y. Y., "Extraction Characteristics of Evening Primrose Oil with Supercritical Carbon Dioxide". Korean Chem. Eng. Res., 27(4): 522-530 (1989).
  27. Ferdosh, S., Sarker, Z. I., Norulaini, N., Oliveira, A., Yunus, K., Chowdury, A. J., Akanda, J., and Omar, M., "Quality of Tuna Fish Oils Extracted from Processing the By-Products of Three Species of Neritic Tuna Using Supercritical Carbon Dioxide". J. Food Process. Pres., 39(4): 432-441 (2015). https://doi.org/10.1111/jfpp.12248
  28. Cho, H.-S., and Park, B.-H., "Effect of Onion and Garlic Juice on the Lipid Oxidation and Quality Characteristics during the Storage of Conger Eel (Astroconger myriaster)". Korean J. Soc. Food Sci., 16(2): 135-142 (2000).
  29. Lee, S.-M., Yun, J.-H., and Chun, B.-S., "Fatty Acid Composition and Oxidative Properties of Anchovy Oil Extracted by Supercritical Carbon Dioxide". Clean Technol., 17(3): 266-272 (2011). https://doi.org/10.7464/KSCT.2011.17.3.266
  30. Wrolstad, R. E., Acree, T. E., Decker, E. A., Penner, M. H., Reid, D. S., Schwartz, S. J., Shoemaker, C. F., Smith, D. M., and Sporns, P., volume 1: Water, proteins, enzymes, lipids, and carbohydrates. Handbook of food analytical chemistry. 2005: John Wiley & Sons.
  31. Boran, G., Karaçam, H., and Boran, M., "Changes in the Quality of Fish Oils due to Storage Temperature and Time". Food Chem., 98(4): 693-698 (2006). https://doi.org/10.1016/j.foodchem.2005.06.041
  32. Bimbo, A. P., "Guidelines for characterizing food-grade fish oils". Inform, 9(5) (1998).
  33. Ohgami, K., Shiratori, K., Kotake, S., Nishida, T., Mizuki, N., Yazawa, K., and Ohno, S., "Effects of Astaxanthin on Lipopolysaccharide-Induced Inflammation in vitro and in vivo". Invest. Ophth. Vis. Sci., 44(6): 2694-2701 (2003). https://doi.org/10.1167/iovs.02-0822
  34. Stahl, E., Schuetz, E., and Mangold, H. K., "Extraction of Seed Oils with Liquid and Supercritical Carbon Dioxide". J. Agr. Food Chem., 28(6): 1153-1157 (1980). https://doi.org/10.1021/jf60232a023
  35. Friedrich, J. P., and List, G. R., "Characterization of Soybean Oil Extracted by Supercritical Carbon Dioxide and Hexane". J. Agr. Food Chem., 30(1): 192-193 (1982). https://doi.org/10.1021/jf00109a044
  36. Noriega-Rodriguez, J., Ortega-Garcia, J., Angulo-Guerrero, O., García, H., Medina-Juarez, L., and Gamez-Meza, N., "Oil Production from Sardine (Sardinops sagax caerulea)". CYTA-J. Food, 7(3): 173-179 (2009). https://doi.org/10.1080/19476330903010243