• 제목/요약/키워드: Conductive polymers

검색결과 92건 처리시간 0.022초

MEMS 공정을 이용한 전도성 고분자 액추에이터용 마이크로 구조물의 제작 (Fabrication of Microstructures for Conductive Polymer Actuators Using MEMS Process)

  • 이승기;정승환
    • 센서학회지
    • /
    • 제12권4호
    • /
    • pp.156-163
    • /
    • 2003
  • 일반적인 표면 마이크로머시닝 공정과 고분자의 중합공정을 결합하여 전도성 고분자인 폴리피롤 액추에이터를 제작하였다. 폴리피롤 액추에이터의 제작 공정을 검증하기 위한 가장 기본적인 구조물은 폴리피롤 캔틸레버이며 이를 이용하여 세포 조작에 응용 가능한 폴리피롤 그리퍼 및 밸브의 기본 구조물들을 제작하였다. 그리퍼는 손가락과 유사한 형태로 뼈에 해당하는 단단한 고분자와 근육에 해당하는 폴리피롤 등으로 구성된다. 밸브는 폴리피롤 캔틸레버에 유로가 결합된 형태로 제작되었다. 제안한 폴리피롤 액추에이터의 제작 공정 및 기본 구조물들은 세포 조작기구와 같은 바이오 관련 응용에 이용될 수 있을 것이다.

Improvement of Mechanical and Electrical Properties of Poly(ethylene glycol) and Cyanoresin Based Polymer Electrolytes

  • Oh Kyung-Wha;Choi Ji-Hyoung;Kim Seong-Hun
    • Fibers and Polymers
    • /
    • 제7권2호
    • /
    • pp.89-94
    • /
    • 2006
  • Ionic conductivity and mechanical properties of a mixed polymer matrix consisting of poly(ethylene glycol) (PEG) and cyanoresin type M (CRM) with various lithium salts and plasticizer were examined. The CRM used was a copolymer of cyanoethyl pullulan and cyanoethyl poly(vinyl alcohol) with a molar ratio of 1:1, mixed plasticizer was ethylene carbonate (EC) and propylene carbonate (PC) at a volume ratio of 1:1. The conductive behavior of polymer electrolytes in the temperature range of $298{\sim}338\;K$ was investigated. The $PEG/LiClO_4$ complexes exhibited the highest ionic conductivity of ${\sim}10^{-5}S/cm$ at $25^{\circ}C$ with the salt concentration of 1.5 M. In addition, the plasticized $PEG/LiClO_4$ complexes exhibited improvement of ionic conductivity. However, their complexes showed decreased mechanical properties. The improvement of ionic conductivity and mechanical properties could be obtained from the polymer electrolytes by using CRM. The highest ionic conductivity of PEG/CRM/$LiClO_4$/(EC-PC) was $5.33{\time}10^{-4}S/cm$ at $25^{\circ}C$.

Preparation of Honeycomb-patterned Polyaniline-MWCNT/Polystyrene Composite Film and Studies on DC Conductivity

  • Kim, Won-Jung;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2345-2351
    • /
    • 2012
  • Conductive honeycomb-patterned polystyrene (PS) thin films were prepared by the formation of a polyaniline (PANI) thin layer on the surface of the patterned PS thin films using simple one-step chemical oxidative polymerization of aniline. The in situ chemical oxidation polymerization of aniline hydrochloride solution on the patterned structure of the PS films was conducted in the presence of multiwalled carbon nanotubes (MWCNT) to prepare the PANI-MWCNT/PS composite film. The concentration (wt %) of MWCNT was varied in the range of 1%-3% by weight. The dependence of surface morphology of the PANI/PS and PANI-MWCNT/PS composite film to the polymerization time was observed by scanning electron microscopy. The room temperature DC conductivity was obtained by the four-probe technique. The conductivity of the PANI-MWCNT/PS composite film was affected both by the MWCNT concentration and polymerization time. In addition, DC electrical field was loaded during the oxidative polymerization to affect the distribution of the MWCNT included in the composite film, varying the loading voltage in the range of 0.1-3.0 V. The conductivity of the PANI-MWCNT/PS composite film was increased as loading voltage rose. However, this increase stops at a voltage higher than the critical value.

새로운 연료전지용 술폰화된 PES계 가교 고분자 전해질 막의 개발 (Development of Crosslinked Sulfonated Poly(ether sulfone)s as Novel Polymer Electrolyte Membranes)

  • 오영석;이명건;김태현
    • 대한화학회지
    • /
    • 제53권3호
    • /
    • pp.345-354
    • /
    • 2009
  • 새로운 연료전지용 고분자 전해질 막으로서 알릴기로 터미네이션된 술폰화된 PES계 고분자 를 비스아자이드와의 열적 가교 반응을 이용하여 합성하였다. 공중합체의 조성은 $^1H$ NMR에 의해 확 인되었다. 전도성 부분인 친수성 영역의 균일한 분포와 견고한 에터 술폰계 고분자 주골격의 끝부분에 만 가교기를 도입하여 소수성 영역을 최소화 하는 전략으로 얻어진 가교 고분자 막은 높은 온도에서 우 수한 수소이온 전도도와 열적 안정성을 나타내었으며 또한, 나피온에 비해 3배 이상의 수소이온 선택 성을 나타내었다.

Preparation and Properties of Waterborne-Polyurethane Coating Materials Containing Conductive Polyaniline

  • Kim, Han-Do;Kwon, Ji-Yun;Kim, Eun-Young
    • Macromolecular Research
    • /
    • 제12권3호
    • /
    • pp.303-310
    • /
    • 2004
  • We have prepared an aqueous dispersion of poly(aniline-dodecyl benzene sulfonic acid complex) (PANI-DC) that has an intrinsic viscosity (〔η〕) near 1.3 dL/g using aniline as a monomer, dodecyl benzene sulfonic acid(DBSA) as a dopant/emulsifier, and ammonium peroxodisulfate(APS) as an oxidant. We found that the electrical conductivity of a PANI-DC pellet was 0.7 S/cm. A waterborne-polyurethane (WBPU) dispersion, obtained from isophorone diisocyanate/polytetramethylene oxide glycol/dimethylol propionic acid/ethylene diamine/triethylene amine, was used as a matrix polymer. We prepared blend films of WBPU/PANI-DC with variable weight ratios (from 99/1 to 66/34) by solution blending/casting and investigated the effects that the PANI-DC content has on the mechanical and dynamic mechanical properties, hardness, electrical conductivity, and antistaticity of these films. The tensile strength, percentage of elongation, and hardness of WBPU/PANI-DC blend films all decreased markedly upon increasing the PANI-DC content. The antistatic half-life time ($\tau$$\sub$$\frac{1}{2}$/) of pure WBPU film was about 110 s, but we found that those of WBPU/ultrasound-treated PANI-DC blend films decreased exponentially from 1.2 s to 0.1 s to almost 0 s upon increasing the PANI-DC content from 1 wt% to 15 wt% to > 15 wt%, respectively.

옥살산과 몰리브덴산나트륨 전해액에서 냉연강판에 전해중합된 폴리아닐린 피막의 특성 (Characterization of Electro-Polymerized Polyaniline Film on the Cold Rolled Sheet in the Oxalic acid and Sodium Molybdate Electrolyte)

  • 임기영;윤정모;기준서;장용석
    • 한국재료학회지
    • /
    • 제16권6호
    • /
    • pp.386-393
    • /
    • 2006
  • Increasing environmental concerns require to solve the problem produced due to the use of heavy metals in coating formulations. Therefore, it is necessary to develop new coating strategy employing inherently conducting polymers such as polyaniline. Polyaniline is a conductive polymer that is synthesized by oxidation polymerization, and the electrochemical and chemical polymerization are possible for the oxidation of aniline. Electrochemical oxidation polymerization produces a fine surface and although voltage control is more convenient, it require electrolytic cells, and elaborate thin film can be acquired with the polymerization. Polyaniline films were electro-polymerized on cold rolled sheets using the galvanostat mode in the oxalic acidaniline-sodium molybdate electrolyte. The structure and properties of polyaniline film were studied using Potentiostat/Galvanostat 263A, FE-SEM,, AFM, SST, Colorimetry. A high corrosion resistance of polyaniline film was observed with an increase of corrosion potential by $500{\sim}600$ mV for the substrate covered with polyaniline.

High-performance photovoltaics by double-charge transporters using graphenic nanosheets and triisopropylsilylethynyl/naphthothiadiazole moieties

  • Agbolaghi, Samira;Aghapour, Sahar;Charoughchi, Somaiyeh;Abbasi, Farhang;Sarvari, Raana
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.293-300
    • /
    • 2018
  • Reduced graphene oxide (rGO) nanosheets were patterned with poly[benzodithiophene-bis(decyltetradecyl-thien) naphthothiadiazole] (PBDT-DTNT) and poly[bis(triiso-propylsilylethynyl) benzodithiophene-bis(decyltetradecyl-thien) naphthobisthiadiazole] (PBDT-TIPS-DTNT-DT) and used in photovoltaics. Conductive patternings changed via surface modification of rGO; because polymers encountered a high hindrance while assembling onto grafted rGO. The best records were detected in indium tin oxide (ITO):poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS):PBDTDTNT/rGO:PBDT-DTNT:LiF:Al devices, i.e., short current density $(J_{sc})=11.18mA/cm^2$, open circuit voltage $(V_{oc})=0.67V$, fill factor (FF) = 62% and power conversion efficiency (PCE) = 4.64%. PCE increased 2.31 folds after incorporation of PBDT-DTNT into thin films. Larger polymer assemblies on bared-rGO nanosheets resulted in greater phase separations.

탄소강화 탄소나노튜브 섬유 복합소재 연구 동향 (A Review of Carbon-Reinforced Carbon Nanotube Fibers Composites)

  • 이동주;류성우;구본철
    • Composites Research
    • /
    • 제32권3호
    • /
    • pp.127-133
    • /
    • 2019
  • 탄소나노튜브는 이론적인 기계적, 전기적 물성이 우수함에도 불구하고 아직까지 그 수준에 도달하고 있지 않다. 특히나 인장 강도는 10% 미만의 수준 정도에 그치고 있어 이를 보안하기 위한 연구가 활발히 진행되고 있다. 기계적 강도를 향상하기 위한 방법으로는 긴 탄소나노튜브의 합성, 배향 외에 화학적 가교, 수소결합, 고분자 함침 등의 방법이 연구되고 있다. 본 총설 논문에서는 탄소소재의 전구체인 폴리아크릴로니트릴(PAN), 폴리도파민(PDA)을 탄소나노튜브 섬유에 코팅 또는 함침하여 탄화 공정을 거쳐 고강도 고전도성 탄소나노튜브 섬유/탄소 복합소재를 제조하는 연구를 소개하고자 한다.

Deep neural networks trained by the adaptive momentum-based technique for stability simulation of organic solar cells

  • Xu, Peng;Qin, Xiao;Zhu, Honglei
    • Structural Engineering and Mechanics
    • /
    • 제83권2호
    • /
    • pp.259-272
    • /
    • 2022
  • The branch of electronics that uses an organic solar cell or conductive organic polymers in order to yield electricity from sunlight is called photovoltaic. Regarding this crucial issue, an artificial intelligence-based predictor is presented to investigate the vibrational behavior of the organic solar cell. In addition, the generalized differential quadrature method (GDQM) is utilized to extract the results. The validation examination is done to confirm the credibility of the results. Then, the deep neural network with fully connected layers (DNN-FCL) is trained by means of Adam optimization on the dataset whose members are the vibration response of the design-points. By determining the optimum values for the biases along with weights of DNN-FCL, one can predict the vibrational characteristics of any organic solar cell by knowing the properties defined as the inputs of the mentioned DNN. To assess the ability of the proposed artificial intelligence-based model in prediction of the vibrational response of the organic solar cell, the authors monitored the mean squared error in different steps of the training the DNN-FCL and they observed that the convergency of the results is excellent.

Si-Containing Nanostructures for Energy-Storage, Sub-10 nm Lithography, and Nonvolatile Memory Applications

  • 정연식
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.108-109
    • /
    • 2012
  • This talk will begin with the demonstration of facile synthesis of silicon nanostructures using the magnesiothermic reduction on silica nanostructures prepared via self-assembly, which will be followed by the characterization results of their performance for energy storage. This talk will also report the fabrication and characterization of highly porous, stretchable, and conductive polymer nanocomposites embedded with carbon nanotubes (CNTs) for application in flexible lithium-ion batteries. It will be presented that the porous CNT-embedded PDMS nanocomposites are capable of good electrochemical performance with mechanical flexibility, suggesting these nanocomposites could be outstanding anode candidates for use in flexible lithium-ion batteries. Directed self-assembly (DSA) of block copolymers (BCPs) can generate uniform and periodic patterns within guiding templates, and has been one of the promising nanofabrication methodologies for resolving the resolution limit of optical lithography. BCP self-assembly processing is scalable and of low cost, and is well-suited for integration with existing semiconductor manufacturing techniques. This talk will introduce recent research results (of my research group) on the self-assembly of Si-containing block copolymers for the achievement of sub-10 nm resolution, fast pattern generation, transfer-printing capability onto nonplanar substrates, and device applications for nonvolatile memories. An extraordinarily facile nanofabrication approach that enables sub-10 nm resolutions through the synergic combination of nanotransfer printing (nTP) and DSA of block copolymers is also introduced. This simple printing method can be applied on oxides, metals, polymers, and non-planar substrates without pretreatments. This talk will also report the direct formation of ordered memristor nanostructures on metal and graphene electrodes by the self-assembly of Si-containing BCPs. This approach offers a practical pathway to fabricate high-density resistive memory devices without using high-cost lithography and pattern-transfer processes. Finally, this talk will present a novel approach that can relieve the power consumption issue of phase-change memories by incorporating a thin $SiO_x$ layer formed by BCP self-assembly, which locally blocks the contact between a heater electrode and a phase-change material and reduces the phase-change volume. The writing current decreases by 5 times (corresponding to a power reduction of 1/20) as the occupying area fraction of $SiO_x$ nanostructures varies.

  • PDF