DOI QR코드

DOI QR Code

High-performance photovoltaics by double-charge transporters using graphenic nanosheets and triisopropylsilylethynyl/naphthothiadiazole moieties

  • Agbolaghi, Samira (Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University) ;
  • Aghapour, Sahar (Institute of Polymeric Materials and Faculty of Polymer Engineering, Sahand University of Technology) ;
  • Charoughchi, Somaiyeh (Institute of Polymeric Materials and Faculty of Polymer Engineering, Sahand University of Technology) ;
  • Abbasi, Farhang (Institute of Polymeric Materials and Faculty of Polymer Engineering, Sahand University of Technology) ;
  • Sarvari, Raana (Department of Chemistry, Payame Noor University)
  • Received : 2018.06.07
  • Accepted : 2018.07.31
  • Published : 2018.12.25

Abstract

Reduced graphene oxide (rGO) nanosheets were patterned with poly[benzodithiophene-bis(decyltetradecyl-thien) naphthothiadiazole] (PBDT-DTNT) and poly[bis(triiso-propylsilylethynyl) benzodithiophene-bis(decyltetradecyl-thien) naphthobisthiadiazole] (PBDT-TIPS-DTNT-DT) and used in photovoltaics. Conductive patternings changed via surface modification of rGO; because polymers encountered a high hindrance while assembling onto grafted rGO. The best records were detected in indium tin oxide (ITO):poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS):PBDTDTNT/rGO:PBDT-DTNT:LiF:Al devices, i.e., short current density $(J_{sc})=11.18mA/cm^2$, open circuit voltage $(V_{oc})=0.67V$, fill factor (FF) = 62% and power conversion efficiency (PCE) = 4.64%. PCE increased 2.31 folds after incorporation of PBDT-DTNT into thin films. Larger polymer assemblies on bared-rGO nanosheets resulted in greater phase separations.

Keywords

References

  1. G. Li, R. Zhu, Y. Yang, Nat. Photonics 6 (3) (2012) 153. https://doi.org/10.1038/nphoton.2012.11
  2. D. Dang, P. Zhou, L. Duan, X. Bao, R. Yang, W. Zhu, J. Mater. Chem. 4 (21) (2016) 8291. https://doi.org/10.1039/C6TA02298G
  3. Y. Li, Acc. Chem. Res. 45 (5) (2012) 723. https://doi.org/10.1021/ar2002446
  4. L. Huo, T. Liu, X. Sun, Y. Cai, A.J. Heeger, Y. Sun, Adv. Mater. 27 (18) (2015) 2938. https://doi.org/10.1002/adma.201500647
  5. J.H. Li, P. Li, J.T. Xu, C.K. Luscombe, Z.Q. Fan, J. Phys. Chem. C 120 (48) (2016) 27665. https://doi.org/10.1021/acs.jpcc.6b09691
  6. M. Chang, J. Lee, N. Kleinhenz, B. Fu, E. Reichmanis, Adv. Funct. Mater. 24 (28) (2014) 4457. https://doi.org/10.1002/adfm.201400523
  7. H. Yan, J. Hollinger, C.R. Bridges, G.R. McKeown, T. Al-Faouri, D.S. Seferos, Chem. Mater. 26 (15) (2014) 4605. https://doi.org/10.1021/cm501985d
  8. D.E. Acevedo-Cartagena, J. Zhu, E. Trabanino, E. Pentzer, T. Emrick, S.S. Nonnenmann, A.L. Briseno, R.C. Hayward, ACS Macro Lett. 4 (5) (2015) 483. https://doi.org/10.1021/acsmacrolett.5b00038
  9. G. Ren, E. Ahmed, S.A. Jenekhe, J. Mater. Chem. 22 (46) (2012) 24373. https://doi.org/10.1039/c2jm33787h
  10. J.S. Kim, J.H. Lee, J.H. Park, C. Shim, M. Sim, K. Cho, Adv. Funct. Mater. 21 (3) (2011) 480. https://doi.org/10.1002/adfm.201000971
  11. R. Bkakri, O.E. Kusmartseva, F.V. Kusmartsev, M. Song, A. Bouazizi, J. Lumin. 161 (2015) 264. https://doi.org/10.1016/j.jlumin.2015.01.014
  12. V.S.A. Challa, K.C. Nune, R.D.K. Misra, Mater. Technol. 31 (8) (2016) 477. https://doi.org/10.1080/10667857.2015.1105581
  13. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovoltaics Res. Appl. 20 (2018) 606.
  14. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 4 (11) (2005) 864. https://doi.org/10.1038/nmat1500
  15. Y. Dias, R. Yerushalmi-Rozen, Polymer 54 (23) (2013) 6399. https://doi.org/10.1016/j.polymer.2013.09.057
  16. M.T. Dang, L. Hirsch, G. Wantz, Adv. Mater. 23 (31) (2011) 3597. https://doi.org/10.1002/adma.201100792
  17. Z. Yang, H. Lu, J. Appl. Polym. Sci. 128 (1) (2013) 802. https://doi.org/10.1002/app.38265
  18. S. Agbolaghi, F. Abbasi, H. Gheybi, Eur. Polym. J. 84 (2016) 465. https://doi.org/10.1016/j.eurpolymj.2016.09.050
  19. S. Agbolaghi, M. Nazari, S. Zenoozi, F. Abbasi, J. Mater. Sci.: Mater. Electron. 28 (14) (2017) 10611. https://doi.org/10.1007/s10854-017-6836-3
  20. S. Agbolaghi, F. Abbasi, S. Zenoozi, M. Nazari, Mater. Sci. Semicond. Process. 63 (2017) 285. https://doi.org/10.1016/j.mssp.2017.02.029
  21. S. Zenoozi, S. Agbolaghi, H. Gheybi, F. Abbasi, Macromol. Chem. Phys. 218 (14) (2017) 1700067. https://doi.org/10.1002/macp.201700067
  22. S. Agbolaghi, M. Alizadeh-Osgouei, S. Zenoozi, S. Abbaspoor, F. Abbasi, J. Nanostruct. Chem. 7 (1) (2017) 15. https://doi.org/10.1007/s40097-016-0210-5
  23. S. Zenoozi, S. Agbolaghi, M. Nazari, F. Abbasi, Mater. Sci. Semicond. Process. 64 (2017) 85. https://doi.org/10.1016/j.mssp.2017.03.015
  24. S. Zenoozi, S. Agbolaghi, E. Poormahdi, M. Hashemzadeh-Gargari, M. Mahmoudi, Macromol. Res. 25 (8) (2017) 826. https://doi.org/10.1007/s13233-017-5082-0
  25. H.M. Heitzer, T.J. Marks, M.A. Ratner, J. Am. Chem. Soc. 137 (22) (2015) 7189. https://doi.org/10.1021/jacs.5b03301
  26. J.U. Lee, J.W. Jung, T. Emrick, T.P. Russell, W.H. Jo, Nanotechnology 21 (10) (2010) 105201. https://doi.org/10.1088/0957-4484/21/10/105201
  27. C. Yang, J.K. Lee, A.J. Heeger, F. Wudl, J. Mater. Chem. 19 (30) (2009) 5416. https://doi.org/10.1039/b901732a
  28. M. He, W. Han, J. Ge, Y. Yang, F. Qiu, Z. Lin, Energy Environ. Sci. 4 (8) (2011) 2894. https://doi.org/10.1039/c1ee01509e
  29. Z. Sun, K. Xiao, J.K. Keum, X. Yu, K. Hong, J. Browning, I.N. Ivanov, J. Chen, J. Alonzo, D. Li, B.G. Sumpter, E.A. Payzant, C.M. Rouleau, D.B. Geohegan, Adv. Mater. 23 (46) (2011) 5529. https://doi.org/10.1002/adma.201103361
  30. M. Sommer, S. Hüttner, U. Steiner, M. Thelakkat, Appl. Phys. Lett. 95 (18) (2009) 294.
  31. N. Sary, F. Richard, C. Brochon, N. Leclerc, P. Leveque, J.N. Audinot, S. Berson, T. Heiser, G. Hadziioannou, R. Mezzenga, Adv. Mater. 22 (6) (2010) 763. https://doi.org/10.1002/adma.200902645
  32. E. Bundgaard, F.C. Krebs, Macromolecules 39 (8) (2006) 2823. https://doi.org/10.1021/ma052683e
  33. T.T. Steckler, X. Zhang, J. Hwang, R. Honeyager, S. Ohira, X.H. Zhang, A. Grant, S. Ellinger, S.A. Odom, D. Sweat, D.B. Tanner, J. Am. Chem. Soc. 131 (8) (2009) 2824. https://doi.org/10.1021/ja809372u
  34. M. Wang, X. Hu, P. Liu, W. Li, X. Gong, F. Huang, Y. Cao, J. Am. Chem. Soc.133 (25) (2011) 9638. https://doi.org/10.1021/ja201131h
  35. J. Tong, L. An, J. Li, P. Zhang, P. Guo, C. Yang, Q. Su, X. Wang, Y. Xia, J. Macromol. Sci. A 54 (3) (2017) 176. https://doi.org/10.1080/10601325.2017.1265404
  36. I. Osaka, T. Kakara, N. Takemura, T. Koganezawa, K. Takimiya, J. Am. Chem. Soc. 135 (24) (2013) 8834. https://doi.org/10.1021/ja404064m
  37. X. Hu, M. Wang, F. Huang, X. Gong, Y. Cao, Synth. Met. 164 (2013) 1. https://doi.org/10.1016/j.synthmet.2012.12.016
  38. Y. Sun, J. Seifter, M. Wang, L.A. Perez, C. Luo, G.C. Bazan, F. Huang, Y. Cao, A.J. Heeger, Adv. Energy Mater. 4 (6) (2014) 1.
  39. C. Mu, P. Liu, W. Ma, K. Jiang, J. Zhao, K. Zhang, Z. Chen, Z. Wei, Y. Yi, J. Wang, S. Yang, Adv. Mater. 26 (42) (2014) 7224. https://doi.org/10.1002/adma.201402473
  40. V. Vohra, K. Kawashima, T. Kakara, T. Koganezawa, I. Osaka, K. Takimiya, H. Murata, Nat. Photonics 9 (2015) 403. https://doi.org/10.1038/nphoton.2015.84
  41. L. Huo, Y. Zhou, Y. Li, Macromol. Rapid Commun. 30 (11) (2009) 925. https://doi.org/10.1002/marc.200800785
  42. C. Cui, W.Y. Wong, Y. Li, Energy Environ. Sci. 7 (7) (2014) 2276. https://doi.org/10.1039/C4EE00446A
  43. J.H. Kim, M. Lee, H. Yang, D.H. Hwang, J. Mater. Chem. A 2 (18) (2014) 6348. https://doi.org/10.1039/c4ta00535j
  44. S. Wood, J.H. Kim, D.H. Hwang, J.S. Kim, Chem. Mater. 27 (12) (2015) 4196. https://doi.org/10.1021/acs.chemmater.5b01503
  45. D.D. Babu, R. Su, A. El-Shafei, A.V. Adhikari, RSC Adv. 6 (36) (2016) 30205. https://doi.org/10.1039/C6RA03866B
  46. D.D. Babu, D. Elsherbiny, H. Cheema, A. El-Shafei, A.V. Adhikari, Dyes Pigm. 132 (2016) 316. https://doi.org/10.1016/j.dyepig.2016.05.016
  47. D.D. Babu, H. Cheema, D. Elsherbiny, A. El-Shafei, A.V. Adhikari, Electrochim. Acta 176 (2015) 868. https://doi.org/10.1016/j.electacta.2015.07.079
  48. X. Ma, Y. Mi, F. Zhang, Q. An, M. Zhang, Z. Hu, X. Liu, J. Zhang, W. Tang, Adv. Energy Mater. 8 (11) (2018) 1702854. https://doi.org/10.1002/aenm.201702854
  49. M. Zhang, F. Zhang, Q. An, Q. Sun, W. Wang, X. Ma, J. Zhang, W. Tang, J. Mater. Chem. A 5 (7) (2017) 3589. https://doi.org/10.1039/C7TA00211D
  50. M. Zhang, J. Wang, F. Zhang, Y. Mi, Q. An, W. Wang, X. Ma, J. Zhang, X. Liu, Nano Energy 39 (2017) 571. https://doi.org/10.1016/j.nanoen.2017.07.044
  51. Q. An, F. Zhang, J. Zhang, W. Tang, Z. Deng, B. Hu, Energy Environ. Sci. 9 (2) (2016) 281. https://doi.org/10.1039/C5EE02641E
  52. J. Wang, Y. Wang, D. He, Z. Liu, H. Wu, H. Wang, Y. Zhao, H. Zhang, B. Yang, Synth. Met. 160 (23-24) (2010) 2494. https://doi.org/10.1016/j.synthmet.2010.09.033
  53. Z. Liu, D. He, Y. Wang, H. Wu, J. Wang, Sol. Energy Mater. Sol. Cells 94 (7) (2010) 1196. https://doi.org/10.1016/j.solmat.2010.03.004
  54. Q. Liu, Z. Liu, X. Zhang, L. Yang, N. Zhang, G. Pan, S. Yin, Y. Chen, J. Wei, Adv. Funct. Mater. 19 (6) (2009) 894. https://doi.org/10.1002/adfm.200800954
  55. Q. Liu, Z. Liu, X. Zhang, N. Zhang, L. Yang, S. Yin, Y. Chen, Appl. Phys. Lett. 92 (22) (2008) 195.
  56. Z. Liu, L. Liu, H. Li, Q. Dong, S. Yao, A.B. Kidd IV, X. Zhang, J. Li, W. Tian, Sol. Energy Mater. Sol. Cells 97 (2012) 28. https://doi.org/10.1016/j.solmat.2011.09.023
  57. D. Yu, Y. Yang, M. Durstock, J.B. Baek, L. Dai, ACS Nano 4 (10) (2010) 5633. https://doi.org/10.1021/nn101671t
  58. D.D. Nguyen, N.H. Tai, Y.L. Chueh, S.Y. Chen, Y.J. Chen, W.S. Kuo, T.W. Chou, C.S. Hsu, L.J. Chen, Nanotechnology 22 (29) (2011) 295606. https://doi.org/10.1088/0957-4484/22/29/295606
  59. P.P. Li, Y. Chen, J. Zhu, M. Feng, X. Zhuang, Y. Lin, H. Zhan, Chem. Eur. J. 17 (3) (2011) 780. https://doi.org/10.1002/chem.201002431
  60. B. Zhang, Y. Chen, G. Liu, L.Q. Xu, J. Chen, C.X. Zhu, K.G. Neoh, E.T. Kang, J. Polym. Sci. A: Polym. Chem. 50 (2) (2012) 378. https://doi.org/10.1002/pola.25043
  61. B. Zhang, G. Liu, Y. Chen, L.J. Zeng, C.X. Zhu, K.G. Neoh, C. Wang, E.T. Kang, Chem. Eur. J. 17 (49) (2011) 13646. https://doi.org/10.1002/chem.201102686
  62. A. Chunder, J. Liu, L. Zhai, Macromol. Rapid Commun. 31 (4) (2010) 380. https://doi.org/10.1002/marc.200900626
  63. V. Skrypnychuk, N. Boulanger, V. Yu, M. Hilke, S.C. Mannsfeld, M.F. Toney, D.R. Barbero, Adv. Funct. Mater. 25 (5) (2015) 664. https://doi.org/10.1002/adfm.201403418
  64. D.H. Kim, H.S. Lee, H.J. Shin, Y.S. Bae, K.H. Lee, S.W. Kim, D. Choi, J.Y. Choi, Soft Matter 9 (22) (2013) 5355. https://doi.org/10.1039/c3sm27767d
  65. S. Agbolaghi, S. Abbaspoor, B. Massoumi, R. Sarvari, S. Sattari, S. Aghapour, S. Charoughchi, Macromol. Chem. Phys. 219 (4) (2018) 1700484. https://doi.org/10.1002/macp.201700484
  66. S. Abbaspoor, S. Agbolaghi, M. Mahmoudi, B. Massoumi, R. Sarvari, Y. Beygi-Khosrowshahi, S. Sattari, Org. Electron. 52 (2018) 243. https://doi.org/10.1016/j.orgel.2017.10.035
  67. S. Agbolaghi, S. Ebrahimi, B. Massoumi, S. Abbaspoor, R. Sarvari, F. Abbasi, J. Polym. Sci. B: Polym. Phys. 55 (24) (2017) 1877. https://doi.org/10.1002/polb.24518
  68. X. Yang, J. Loos, S.C. Veenstra, W.J. Verhees, M.M. Wienk, J.M. Kroon, M.A. Michels, R.A. Janssen, Nano Lett. 5 (4) (2005) 579. https://doi.org/10.1021/nl048120i
  69. H.S. Wang, L.H. Lin, S.Y. Chen, Y.L. Wang, K.H. Wei, Nanotechnology 20 (7) (2009) 075201. https://doi.org/10.1088/0957-4484/20/7/075201
  70. H. Xin, F.S. Kim, S.A. Jenekhe, J. Am. Chem. Soc. 130 (16) (2008) 5424. https://doi.org/10.1021/ja800411b
  71. H. Xin, G. Ren, F.S. Kim, S.A. Jenekhe, Chem. Mater. 20 (19) (2008) 6199. https://doi.org/10.1021/cm801324m
  72. S. Berson, R. De Bettignies, S. Bailly, S. Guillerez, Adv. Funct. Mater.17 (8) (2007) 1377. https://doi.org/10.1002/adfm.200600922
  73. Z. Yang, M. Moffa, Y. Liu, H. Li, L. Persano, A. Camposeo, R. Saija, M.A. Iati, O.M. Marago, D. Pisignano, C.Y. Nam, J. Phys. Chem. C 122 (5) (2018) 3058. https://doi.org/10.1021/acs.jpcc.7b11188
  74. V.D. Mihailetchi, H.X. Xie, B. de Boer, L.A. Koster, P.W. Blom, Adv. Funct. Mater. 16 (5) (2006) 699. https://doi.org/10.1002/adfm.200500420
  75. Z. Hu, J. Zhang, L. Huang, J. Sun, T. Zhang, H. He, J. Zhang, H. Zhang, Y. Zhu, Renew. Energy 74 (2015) 11. https://doi.org/10.1016/j.renene.2014.07.034
  76. T. Yang, M. Wang, C. Duan, X. Hu, L. Huang, J. Peng, F. Huang, X. Gong, Energy Environ. Sci. 5 (8) (2012) 8208. https://doi.org/10.1039/c2ee22296e
  77. M. Campoy-Quiles, Y. Kanai, A. El-Basaty, H. Sakai, H. Murata, Org. Electron. 10 (6) (2009) 1120. https://doi.org/10.1016/j.orgel.2009.05.028
  78. R.J. Kline, M.D. McGehee, J. Macromol. Sci. C: Polym. Rev. 46 (1) (2006) 27. https://doi.org/10.1080/15321790500471194

Cited by

  1. Improved stability in P3HT:PCBM photovoltaics by incorporation of well‐designed polythiophene/graphene compositions vol.69, pp.9, 2020, https://doi.org/10.1002/pi.6024
  2. Perovskite type BaSnO3-reduced graphene oxide nanocomposite for photocatalytic decolourization of organic dye pollutant vol.787, pp.None, 2022, https://doi.org/10.1016/j.cplett.2021.139237