Browse > Article
http://dx.doi.org/10.7234/composres.2019.32.3.127

A Review of Carbon-Reinforced Carbon Nanotube Fibers Composites  

Lee, Dongju (Carbon Composite Materials Research Center, Korea Institute of Science and Technology)
Ryu, Seongwoo (Department of Advanced Materials Science and Engineering, The University of Suwon)
Ku, Bon-Cheol (Carbon Composite Materials Research Center, Korea Institute of Science and Technology)
Publication Information
Composites Research / v.32, no.3, 2019 , pp. 127-133 More about this Journal
Abstract
Although carbon nanotubes(CNTs) have outstanding theoretical mechanical and electrical properties, CNT fibers(CNTFs) have not yet reached that level. Particularly, tensile strength is only about 10% or less, so studies for making up for it are being actively conducted. As a way for improving mechanical strength, methods such as synthesizing long CNT, orientation, chemical cross-linking, hydrogen bonding and polymer infiltration are being studied. In this review paper, we report preparation methods for highly conductive and strong CNTF/Carbon composites through coating and infiltration followed by carbonization of carbon precursor polymers such as polyacrylonitrile (PAN) and polydopamine (PDA) on CNTFs.
Keywords
Carbon nanotube fibers; Carbon-reinforced composites; Mechanical strength; Electrical conductivity; Polydopamine; Polyacrylonitrile;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ryu, S.W., Rong Zhao, Lee, H.S., and Kim, S.G., "Direct Insulation-to-Conduction Transformation of Adhesive Catecholamine for Simultaneous Increases of Electrical Conductivity and Mechanical Strength of CNT Fibers," Advanced Materials, Vol. 27, 2015, pp. 3250-3255.   DOI
2 Sijie, W., Shaoli, F., Lei, J., Qunfeng, C., and Ray, H.B., "Strong, Conductive, Foldable Graphene Sheets by Sequential Ionic and ${\pi}$ Bridging," Advanced Materials, Vol. 30, No. 36, 2018, pp. 1802733.   DOI
3 Yuanyuan, Z., Jingsong, P., Stephan, E.W., and Qungfeng, C., "Bioinspired Supertough Graphene Fiber through Sequential Interfacial Interactions," ACS Nano, Vol. 12, No. 9, 2018, pp. 8901-8908.   DOI
4 Kim, H., Rouhollah, J., Geoffrey, M.S., and Kim, S.J., "High-strength Graphene and Polyacrylonitrile Composite Fiber Enhanced by Surface Coating with Polydopamine," Composites Science and Technology, Vol. 149, No. 8, 2017, pp. 280-285.   DOI
5 Songlin, Z., Ayou, H., Nam, N., Abiodun, O., Zhe, L., Yourri, D., Park, J.K., and Richard, L., "Carbon Nanotube/carbon Composite Fiber with Improved Strength and Electrical Conductivity via Interface Engineering," Carbon, Vol. 144, 2019, pp. 628-638.   DOI
6 Zhou, Z., Xin, W., Shanghayegh, F., Philip, D.B., Qingwen, L., and Yuntian, Z., "Mechanical and Electrical Properties of Aligned Carbon Nanotube/carbon Matrix Composites," Carbon, Vol. 75, 2014, pp. 307-313.   DOI
7 Thiagarajan, V., Wang, X., Bradford, P.D., Zhu, Y.T., and Yuan, F.G., "Stabilizing Carbon Nanotube Yarns Using Chemical Vapor Infiltration," Composite Science and Technology, Vol. 90, No. 10, 2014, pp. 82-87.   DOI
8 Xiaoyang, L., Wei, Z., Wenbin, Z., Peng, L., Shu, L., Haoming, W., Guangzhi, Y., Junhe, Y., Jie, C., Richeng, Y., Lina, Z., Jiaping, W., Qunqing, L., Weiya, Z., Weisheng, Z., Shoushan, F., and Kaili, J., "Epitaxial Growth of Aligned and Continuous Carbon Nanofibers from Carbon Nanotubes," ACS Nano, Vol. 11, No. 2, 2017, pp. 1257-1263.   DOI
9 Tao, M., Huai, L.G., Huai, P.C., Hong, B.Y., Liang, W., and Zi, Y.Y., "A Bioinspired Interface Design for Improving the Strength and Electrical Conductivity of Graphene-Based Fibers," Advanced Materials, Vol. 30, No. 15, 2018, pp. 1706435.   DOI
10 Wei, H., Hong, P.Z., Javad, T., Jonathan, C., and Youhong, T., "Polydopamine as Sizing on Carbon Fiber Surfaces for Enhancement of Epoxy Laminated Composites," Composites Part A, Vol. 107, 2018, pp. 626-632.   DOI
11 Kim, I.H., Yun, T.Y., Kim, J.E., Yu H.Y., Suchithra, P.S., and Lee, K.E., "Mussel-Inspired Defect Engineering of Graphene Liquid Crystalline Fibers for Synergistic Enhancement of Mechanical Strength and Electrical Conductivity," Advanced Materials, Vol. 30, No. 40, 2018, pp. 1803267.   DOI
12 Kim, Y.J., Park, J.B., Kim H.J., Jeong, H.S., Lee, J.H., Kim, S.M., and Kim, Y.K., "Simultaneous Enhancement of Mechanical and Electrical Properties of Carbon Nanotube Fiber by Infiltration and Subsequent Carbonization of Resorcinol-formaldehyde Resin," Composite Part B, Vol. 163, 2019, pp. 431-437.   DOI
13 Li, Y.L., Ian, A.K., and Alan, H.W., "Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis," Science, Vol. 304, 2004, pp. 276-278.   DOI
14 Ian, A.K., Suhr, J., Jun, L., Robert J.Y., and Pulickel, M.A., "Composites with Carbon Nanotubes and Graphene: An Outlook," Science, Vol. 362, No. 6414, 2018, pp. 547-553.   DOI
15 Sobia, I., Muhammad, S., Ayesha, K., Sedra, T.M., Jaweria, A., and Iram, B., "A Review Featuring Fabrication, Properties and Applications of Carbon Nanotubes (CNTs) Reinforced Polymer and Epoxy Nanocomposites," Nature, Vol. 358, 1992, pp. 220-222.   DOI
16 Brigitte, V., Alain, P., Claude, C., Cedric, S., Rene, P., Catherine, J., Patrick, B., and Philippe, P., "Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes," Science, Vol. 290, No. 5495, 2000, pp. 1331-1334.   DOI
17 Lars, M.E., Hua, F., Haiqing, P., Virginia, A.D., Wei, Z., Joseph, S., Yuhuang, W., Richard, B., Juraj, V., Csaba, G., Nicholas, G.P., Kim, M.J., Sivarajan, R., Rajesh, K.S., Carter, K., Gerry, L., Howard, S., Wade, A., Billups, W.E., Matteo, P., Hwang, W.F., Robert, H.H., John, E.F., and Richard, E.S., "Macroscopic, Neat, Single-Walled Carbon Nanotube Fibers," Science, Vol. 305, 2004, pp. 1447-1450.   DOI
18 Mei, Z., Ken, R.A., and Ray, H.B., "Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology," Science, Vol. 306, 2004, pp. 1358-1361.   DOI
19 Natnael B., Colin, C.Y., Dmitri, E.T., Olga, K., Xuan, W., Anson, W.K.M., Amram, B., Ron, F.W., Jorrit, J.J., Ron, E.H., Steven, B.F., John, B.F., Benji, M., Junichiro, K., Yeshayahu, T., Yachin, C., Marcin, J.O., and Matteo, P., "Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity," Science, Vol. 339, 2013, pp. 182-186.   DOI
20 Krzysztof, K., Juan, V., Anna, M., Marcelo, M., Philip, C., Michael, S., and Alan, W., "High-Performance Carbon Nanotube Fiber," Science, Vol. 318, 2007, pp. 1892-1895.   DOI
21 Manishkumar, D.Y., Kinshuk, D., Ashwin, W.P., and Jyeshtharaj, B.J., "High Performance Fibers from Carbon Nanotubes: Synthesis, Characterization and Applications in Composites - A Review," Industrial and Engineering Chemistry Research, Vol.56, Nol. 44, 2017, pp. 12407-12437.   DOI
22 Choi, Y.M., Jung, J., Hwang, J.Y., Kim, S.M., Jeong, H., Ku, B.C., and Goh, M., "Advances in Liquid Crystalline Nano-carbon Materials: Preparation of Nano-carbon Based Lyotropic Liquid Crystal and Their Fabrication of Nano-carbon Fibers with Liquid Crystalline Spinning," Carbon Letters, Vol. 16, No. 4, 2015, pp. 223-232.   DOI
23 Jiangtao, D., Xiaohua, Z., Zhenzhong, Y., Yongyi, Z., Da, L., Ru, L., and Qingwen, L., "Carbon-Nanotube Fibers for Wearable Devices and Smart Textiles," Advanced Materials, Vol. 28, No. 47, 2016, pp. 10529-10538.   DOI
24 Weibang, L., Mei, Z., Byun, J.H., Kim, B.S., and Tsu, W.C., "State of the Art of Carbon Nanotube Fibers: Opportunities and Challenges," Advanced Materials, Vol. 24, No. 14, 2012, pp. 1805-1833.   DOI
25 Choo, H., Jung, Y., Jeong, Y., Kim, H.C., and Ku, B.C., "Fabrication and Applications of Carbon Nanotube Fibers," Carbon Letters, Vol. 13, No. 4, 2012, pp. 191-204.   DOI
26 Enlai, G., Weibang, L., and Zhiping, X., "Strength Loss of Carbon Nanotube Fibers Explained in a Three-level Hierarchical Model," Carbon, Vol. 138, 2018, pp. 134-142.   DOI
27 Im, Y.O., Lee, S.H., Kim, T., Park, J., Lee, J., and Lee, K.H., "Utilization of Carboxylic Functional Groups Generated during Purification of Carbon Nanotube Fiber for Its Strength Improvement," Applied Surface Science, Vol. 392, 2017, pp. 342-349.   DOI
28 Park, O.K., Kim, W.Y., Kim, S.M., You, N.H., Jeong, Y., Lee, H.S., and Ku, B.C., "Effect of Oxygen Plasma Treatment on the Mechanical Properties of Carbon Nanotube Fibers," Material Letters, Vol. 156, 2015, pp. 17-20.   DOI
29 Yunxiang, G., Hongwei, C., Jun, G., Jingna, Z., Qingwen, L., Jianxin, T., Yi, C., and Liwei, C., "Direct Intertube Cross-Linking of Carbon Nanotubes at Room Temperature," Nano Letters, Vol. 16, No. 10, 2016, pp. 6541-6547.   DOI
30 Slawomir, B., Rajyashree, M.S., Alan, H.W., and Krzysztof, K.K., "Enhancement of the Mechanical Properties of Directly Spun CNT Fibers by Chemical Treatment," ACS Nano, Vol. 5, No. 12, 2011, pp. 9339-9344.   DOI
31 Park, O.K., Choi, H., Jeong, H., Jung, Y., Yu, J.S., Lee, J.K., Hwang, J.Y., Kim, S.M., Jeong, Y., Park, C.R., Endo, M., and Ku, B.C., "High-modulus and Strength Carbon Nanotube Fibers Using Molecular Cross-linking," Carbon, Vol. 118, 2017, pp. 413-421.   DOI
32 Park, O.K., Lee, W., Hwang, J.Y., You, N.H., Jeong, Y., Kim, S.M., and Ku, B.C., "Mechanical and Electrical Properties of Thermochemically Cross-linked Polymer Carbon Nanotube Fibers," Composites Part A, Vol. 91, 2016, pp. 222-228.   DOI
33 Kim, H.J., Lee, J.K., You, N.H., Kim, S.M., Hwang, J.Y., Goh, M., Jeong, Y., and Ku, B.C., "Mechanical and Electrical Properties of Carbon Nanotube Fibers from Impregnation with Poly(vinyl alcohol)/Poly(acrylic acid) and Subsequent Thermal Condensation," Polymer Composites, Vol. 39, No. 3, 2018, pp. 971-977.   DOI
34 Xinyi, L., Nitilaksha, H., Kunlun, H., Maria, C.E., Victoria, H.R., Amit, K.N., Gajanan, S.B., Kang, N.G., and Jimmy, W.M., "Improving Mechanical Properties of Carbon Nanotube Fibers Through Simultaneous Solid-state Cycloaddition and Crosslinking," Nanotechnology, Vol. 28, No. 14, 2017, pp. 145603-145612.   DOI
35 Cho, H., Lee, J., Lee, H., Lee, C.H., Lee, K.H., Lee, S.H., and Park, J., "Effects of Wet-Pressing and Cross-Linking on the Tensile Properties of Carbon Nanotube Fibers," Materials, Vol. 11, No. 11, 2018, pp. 2170-2181.   DOI
36 Nam, K.H., Im, Y.O., Park, H.J., Lee, H., Park, J., Jeong, S., Kim, S.M., You, N.H., Choi, J.H., Han, H., Lee, K.H., and Ku, B.C., "Photoacoustic Effect on the Electrical and Mechanical Properties of Polymer-infiltrated Carbon Nanotube Fiber/graphene Oxide Composites," Composite Science and Technology, Vol. 153, 2017, pp. 136-144.   DOI
37 Pirlot, C., Willems, I., Fonseca, A., Nagy, J.B., and Delhalle, J., "Preparation and Characterization of Carbon Nanotube/Polyacrylonitrile Composites," Advanced Engineering Materials, Vol. 4, No. 3, 2002, pp. 109-114.   DOI
38 Shan, L., Xiaohua, Z., Jingna, Z., Meng, F., Xu, G., Yong, Z., Jia, J., Zhang, Z., and Li, Q., "Enhancement of Carbon Nanotube Fibres Using Different Solvents and Polymers," Composites Science and Technology, Vol. 72, No. 12, 2012, pp. 1402-1407.   DOI
39 Xia, L., Qing, S.Y., Xiao, Q.H., and Kim, M.L., "Self-densified Microstructure and Enhanced Properties of Carbon Nanotube Fiber by Infiltrating Polymer," Carbon, Vol. 106, 2016, pp. 188-194.   DOI
40 Jialin, L., Wenbin, G., Yagang, Y., Qingwen, L., Jin, J., Yong, W., Gengheng, Z., Shuxuan, Q., and Weibang, L., "Strengthening Carbon Nanotube Fibers with Semi-crystallized Polyvinyl Alcohol and Hot-stretching," Composite Science and Technology, Vol. 164, 2018, pp. 290-295.   DOI
41 Biao, W., Jianmei, L., Huaping, W., Jianming, J., and Yunqi, L., "Rheological Behavior of Spinning Dope of Multiwalled Carbon Nanotube/Polyacrylonitrile Composites," Macromolecular Symposia, Vol. 216, No. 1, 2004, pp. 189-194.   DOI
42 Lee, J., Kim, T., Jung, Y., Jung, K., Park, J., Lee, D.M., Jeong, H.S., Hwang, J.Y., Park, C.R., Lee, K.H., and Kim, S.M., "Highstrength Carbon Nanotube/carbon Composite Fibers via Chemical Vapor Infiltration," Nanoscale Vol. 8, No. 45, 2016, pp. 18972-18979.   DOI
43 Ryu, S.W., Lee, Y.H., Lee, H.S., and Hong, S.H., "High-Strength Carbon Nanotube Fibers Fabricated by Infiltration and Curing of Mussel-Inspired Catecholamine Polymer," Advanced Materials, Vol. 23, No. 17, 2011, pp. 1971-1975.   DOI
44 Jeong, Y.G., Song, J.Y., Cho, D.H., and Kim, B.K., "Method for Preparing Carbon Nanotube Fiber Reinforced wtih Carbon Precursor," US Patent, 2015/0069666.
45 Lee, H.S., Messersmith, P., and Ryu, J.H., "Polydopamine Surface Chemistry : A Decade of Discovery," ACS Applied Materials Interfaces, Vol. 10, 2018, pp. 7523-7540.   DOI
46 Park, O.K., Chae, H.S., Park, G.Y., Nam, N.H., Lee, S., Bang, Y.H., David, H., Ku, B.C., and Lee, J.H., "Effects of Functional Group of Carbon Nanotubes on Mechanical Properties of Carbon Fibers, Composites Part B: Engineering, Vol. 76, 2015, pp. 159-166.   DOI
47 Chae, H.G., Bradley, A.N., Prabhakar, V.G., Yaodong, L., Kishor, K.G., Manjeshwar, G.K., Kevin, M.L., Sushanta, G., Chandrani, P., Lucille, G., Korhan, S., Ioannis, C., and Satish, K., "High Strength and High Modulus Carbon Fibers," Carbon, Vol. 93, 2015, pp. 81-87.   DOI
48 Lee, H.S., Dellatore, S.M., Miller, W.M., and Messersmith, P.B., "Mussel-Inspired Surface Chemistry for Multifunctional Coatings," Science, Vol. 318, 2007, pp. 426-430.   DOI