• 제목/요약/키워드: Conductive polymer

검색결과 397건 처리시간 0.027초

유기태양전지의 개발현황 (Recent Development Status of Organic Solar Cells)

  • 방창현;박근희;정동근;채희엽
    • 한국진공학회지
    • /
    • 제16권3호
    • /
    • pp.167-171
    • /
    • 2007
  • 세계적으로 석유자원의 고갈로 대체 에너지 중에서도 태양전지는 가장 주목받는 기술 중에 하나이며, 크게 무기물 태양전지와 유기태양전지로 구분된다. 그 중에서 유기태양전지의 변환효율은 무기물 태양전지에 상당히 미치지 못하지만, 제작공정의 비용이 낮고, 투명하고 다양한 색을 낼 수 있으며, 유연성을 띠는 장점으로 인하여 무기물 태양전지가 사용될 수 없는 시장을 중심으로 저비용 제품으로 사용될 가능성이 높아지고 있다. 현재 유기태양전지의 효율, 수명, 그리고, 안정성이 태양전지의 보급화에 중요한 이슈이며, 다양한 연구가 진행되고 있다. 본 글은 유기태양전지의 기술적 원리, 현재 개발 동향 및 이슈, 그리고 발전 방향에 대하여 정리하였다.

저온 경화형 Ag 페이스트 및 이를 이용한 Ag 후막의 제조 및 특성 (Properties of Ag Thick Films Fabricated by Using Low Temperature Curable Ag Pastes)

  • 박준식;황준호;김진구;김용한;박효덕;강성군
    • 한국재료학회지
    • /
    • 제13권1호
    • /
    • pp.18-23
    • /
    • 2003
  • Properties of Ag thick films fabricated by using low temperature curable silver pastes were investigated. Ag pastes were consisted of polymer resins and silver powders. Ag pastes were used for conductive or fixing materials between board and various electrical and electronic devices. Low temperature curable Ag pastes have some advantages over high temperature curable types. In cases of chip mounting, soldering properties were required for screen printed Ag thick films. In this study, four types of Ag pastes were fabricated with different compositions. Screen printed Ag thick films on alumina substrates were fabricated at various curing temperatures and times. Thickness, resistivity, adhesive strength and solderability of fabricated Ag thick films were characterized. Finally, Ag thick films produced using Ag pastes, sample A and B, cured at $150^{\circ}C$ for longer than 6 h and $180^{\circ}C$ for longer than 2 h, and $150^{\circ}C$ for longer than 1 h and $180^{\circ}C$ for 1 h, respectively, showed low resistivities of $10^{-4}$ $∼10^{-5}$ Ωcm and good adhesive strength of 1∼5 Mpa. Soldering properties of those Ag thick films with curing temperatures at solder of 62Sn/36Pb/3Ag were also investigated.

다발/매트로 구성된 탄소나노튜브 복합재 엑츄에이터의 거동특성 및 응용연구 (Electromechanical Behaviors and Application of Carbon Nanotube Composite Actuators Consisting of Bundles and Mats)

  • 김철;류신윈
    • Composites Research
    • /
    • 제18권5호
    • /
    • pp.34-39
    • /
    • 2005
  • 단일벽 탄소나노튜브와 전기전도성 폴리머로 구성된 복합재 엑츄에이터의 변형율-전압간의 관계식이 유도되었으며, 얇은 복합재 필름 형태의 엑츄에이터의 전기기계적인 작동을 수식화하기 위해서 전기화학적 이온 접근법을 사용하였다. 이 방법은 엑츄에이터의 작동에 대한 이해를 쉽게 할 수 있다. 실험결과와 계산결과는 잘 일치한다. 이상적으로 잘 배열된 단일벽 탄소나노튜브 엑츄에이터는 좋은 반응특성과 작동력을 나타내었다. 작동변위는 나노튜브와 기지인 폴리머의 영향을 받으며, 단일벽 탄소나노튜브는 양의 전압에서는 기지를 보강하며 음의 전압에서는 기지를 수축하게 하는 영향을 미친다. 나노튜브의 배열을 곧게하고, 적절한 전해질과 전압을 선택하면 엑츄에이터의 성능을 최적화시킬 수 있다.

Highly Reliable Solder ACFs FOB (Flex-on-Board) Interconnection Using Ultrasonic Bonding

  • Kim, Yoo-Sun;Zhang, Shuye;Paik, Kyung-Wook
    • 마이크로전자및패키징학회지
    • /
    • 제22권1호
    • /
    • pp.35-41
    • /
    • 2015
  • In this study, in order to improve the reliability of ACF interconnections, solder ACF joints were investigated interms of solder joint morphology and solder wetting areas, and evaluated the electrical properties of Flex-on-Board (FOB) interconncections. Solder ACF joints with the ultrasonic bonding method showed excellent solder wetting by broken solder oxide layers on solder surfaces compared with solder joints with remaining solder oxide layer bonded by the conventional thermo-compression (TC) bonding method. When higher target temperature was used, Sn58Bi solder joints showed concave shape due to lower degree of cure of resin at solder MP by higher heating rate. ACFs with epoxy resins and SAC305 solders showed lower degree of resin cure at solder MP due to the slow curing rate resulting in concave shaped solder joints. In terms of solder wetting area, solder ACFs with $25-32{\mu}m$ diameters and 30-40 wt% showed highest wetted solder areas. Solder ACF joints with the concave shape and the highest wetting area showed lower contact resistances and higher reliability in PCT results than conventional ACF joints. These results indicate that solder morphologies and wetting areas of solder ACF joints can be controlled by adjustment of bonding conditions and material properties of solder and polymer resin to improve reliability of ACF joints.

Enhanced Electrical Properties of Light-emitting Electrochemical Cells Based on PEDOT:PSS incorporated Ruthenium(II) Complex as a Light-emitting layer

  • 강용수;박성희;이혜현;조영란;황종원;최영선
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.139-139
    • /
    • 2010
  • Ionic Transition Metal Complex based (iTMC) Light-emitting electrochemical cells (LEECs) have been drawn attention for cheap and easy-to-fabricate light-emitting device. LEEC is one of the promising candidate for next generation display and solid-state lighting applications which can cover the defects of current commercial OLEDs like complicated fabrication process and strong work-function dependent sturucture. We have investigated the performance characteristics of LEECs based on poly (3, 4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS)-incorporated transition metal complex, which is tris(2, 2'-bipyridyl)ruthenium(II) hexafluorophosphate in this study. There are advantages using conductive polymer-incorporated luminous layer to prevent light disturbance and absorbance while light-emitting process between light-emitting layer and transparent electrode like ITO. The devices were fabricated as sandwiched structure and light-emitting layer was deposited approximately 40nm thickness by spin coating and aluminum electrode was deposited using thermal evaporation process under the vacuum condition (10-3Pa). Current density and light intensity were measured using optical spectrometer, and surface morphology changes of the luminous layer were observed using XRD and AFM varying contents of PEDOT:PSS in the Ruthenium(II) complex solution. To observe enhanced ionic conductivity of PEDOT:PSS and luminous layer, space-charge-limited-currents model was introduced and it showed that the performances and stability of LEECs were improved. Main discussions are the followings. First, relationship between film thickness and performance characteristics of device was considered. Secondly, light-emitting behavior when PEDOT:PSS layer on the ITO, as a buffer, was introduced to iTMC LEECs. Finally, electrical properties including carrier mobility, current density-voltage, light intensity-voltage, response time and turn-on voltages were investigated.

  • PDF

What Is the Key Vacuum Technology for OLED Manufacturing Process?

  • 백충렬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.95-95
    • /
    • 2014
  • An OLED(Organic Light-Emitting Diode) device based on the emissive electroluminescent layer a film of organic materials. OLED is used for many electronic devices such as TV, mobile phones, handheld games consoles. ULVAC's mass production systems are indispensable to the manufacturing of OLED device. ULVAC is a manufacturer and worldwide supplier of equipment and vacuum systems for the OLED, LCD, Semiconductor, Electronics, Optical device and related high technology industries. The SMD Series are single-substrate sputtering systems for deposition of films such as metal films and TCO (Transparent Conductive Oxide) films. ULVAC has delivered a large number of these systems not only Organic Evaporating systems but also LTPS CVD systems. The most important technology of thin-film encapsulation (TFE) is preventing moisture($H_2O$) and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass substrate, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This report provides a review of promising thin-film barrier technologies as well as the WVTR(Water Vapor Transmission Rate) properties. Multilayer thin-film deposition technology of organic and inorganic layer is very effective method for increasing barrier performance of OLED device. Gases and water in the organic evaporating system is having a strong influence as impurities to OLED device. CRYO pump is one of the very useful vacuum components to reduce above impurities. There for CRYO pump is faster than conventional TMP exhaust velocity of gases and water. So, we suggest new method to make a good vacuum condition which is CRYO Trap addition on OLED evaporator. Alignment accuracy is one of the key technologies to perform high resolution OLED device. In order to reduce vibration characteristic of CRYO pump, ULVAC has developed low vibration CRYO pumps to achieve high resolution alignment performance between Metal mask and substrate. This report also includes ULVAC's approach for these issues.

  • PDF

생물학적 후각 시스템을 모방한 대규모 가스 센서 어레이에서 코사인 유사도와 퍼지 클러스터링을 이용한 중복도 제거 방법 (The Redundancy Reduction Using Fuzzy C-means Clustering and Cosine Similarity on a Very Large Gas Sensor Array for Mimicking Biological Olfaction)

  • 김정도;김정주;박성대;변형기;;임승주
    • 센서학회지
    • /
    • 제21권1호
    • /
    • pp.59-67
    • /
    • 2012
  • It was reported that the latest sensor technology allow an 65536 conductive polymer sensor array to be made with broad but overlapping selectivity to different families of chemicals emulating the characteristics found in biological olfaction. However, the supernumerary redundancy always accompanies great error and risk as well as an inordinate amount of computation time and local minima in signal processing, e.g. neural networks. In this paper, we propose a new method to reduce the number of sensor for analysis by reducing redundancy between sensors and by removing unstable sensors using the cosine similarity method and to decide on representative sensor using FCM(Fuzzy C-Means) algorithm. The representative sensors can be just used in analyzing. And, we introduce DWT(Discrete Wavelet Transform) for data compression in the time domain as preprocessing. Throughout experimental trials, we have done a comparative analysis between gas sensor data with and without reduced redundancy. The possibility and superiority of the proposed methods are confirmed through experiments.

과학적 방법을 적용한 화재조사와 결함수 분석을 이용한 정온전선의 발화원인 추론 (Fire Cause Reasoning of Self-regulating Heating Cable by a Fire Investigation Applying the Scientific Method and Fault Tree Analysis)

  • 김두현;이흥수
    • 한국화재소방학회논문지
    • /
    • 제30권4호
    • /
    • pp.73-81
    • /
    • 2016
  • 정온전선은 평형 도체 사이에 반도전성 폴리머를 연속 압출 방식으로 충전시킨 후 양 도체 사이에 전기를 흐르게 함으로써 고분자에 의한 전열을 이용한 전기 발열체이다. 정온전선은 가격이 저렴하고 시공이 편리하기 때문에 겨울철 수배관의 동파방지용 열선으로 주로 사용되고 있다. 하지만 이러한 유용함에도 불구하고 구조적인 문제로 인하여 두 평형 도체의 절연이 파괴되는 경우에는 화재로 이어질 수도 있는 위험성이 존재하고 있다. 본 논문은 정온전선에 의한 화재현장을 조사하여 원인을 도출하는 방식으로 직접적인 원인을 추론하고자 하였으며, 결함수 분석을 통해 근본적인 문제를 파악해 보고자 하였다. 실제 냉동창고 화재현장을 조사하여 정온전선에 의한 화재원인을 추론한 결과 전선 말단 절연처리 결함에 의한 절연파괴인 것으로 판단되었다. 향후 이 결과는 안전활동 및 유사 화재원인조사 시에도 활용될 수 있을 것이다

PEDOT:PSS로 코팅된 PLA 나노섬유 웹의 전기전도성 텍스타일 제조 (Fabrication of Electroconductive Textiles Based PLA Nanofiber Web Coated with PEDOT:PSS)

  • 신성은;차수진;조길수
    • 한국의류산업학회지
    • /
    • 제22권2호
    • /
    • pp.233-239
    • /
    • 2020
  • We proposed a simple process of fabricating electroconductive textiles by coating conductive polymer PEDOT:PSS (Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)) on biocompatible PLA (Poly Lactic Acid) nanofiber web for application to smart healthcare. Electroconductive textiles were obtained by a drop-coating process using different amounts of PEDOT:PSS solutions., DMSO (dimethyl sulfoxide) was then used as an additive in the post-treatment process to improve conductivity. The surface morphology of the specimens was observed by FE-SEM. The chemical structures of the specimens were characterized using FTIR. The electrical properties (linear and sheet resistance) of the specimens were measured. The effect of the bending angles on the electrical properties was also investigated to confirm their applicability as wearable smart textiles. FE-SEM and FTIR analysis confirmed that the deposition of PEDOT:PSS on the PLA nanofiber web surface was successful. The conductivity of the PEDOT:PSS/PLA nanofiber web was enhanced up to 1.5 ml with an increasing amount of PEDOT:PSS solutions, but there was no significant difference at 2.0 ml. The optimum condition of PEDOT:PSS deposition was established to 1.5 ml. Even when the specimen coated with 1.5 ml was bent every 30°, the change in the electrical resistance values was still low within 3.7 Ω. It confirmed that stable electrical performance was maintained and proved the applicability as a flexible textile sensor.

Silane Coupling제로 표면 처리된 ATO 나노입자를 이용하여 제조된 대전방지 ATO/EPOXY 복합체의 코팅 물성 (Properties of Static Dissipative Epoxy Composites Loaded with Silane Coupled-ATO Nanoparticles)

  • 유요한;김태영;김종은;서광석
    • 한국전기전자재료학회논문지
    • /
    • 제21권4호
    • /
    • pp.388-394
    • /
    • 2008
  • For purpose of anti-static film remaining unchanged in the condition of $160^{\circ}C$, organic solvent, acid and base solution $0.01\sim0.03{\mu}m$ particles of Sb doped tin oxide(ATO) were grafted by 3-Glycidyloxypropyltrimethoxysilane(GPTS) for improving interfere bonding force between ATO and epoxy resin. The particles were dispersed in 2-methoxyethanol with YD-I28(Bisphenol A type epoxy resin, Kukdo chemical) and 1-imidazole as hardener. The anti-static solutions were coated on PI film as thickness of $0.1{\mu}m$. Surface resistivity of anti-static film containing conductive polymer became $10^{12}\Omega/\Box$ after 32 hours in $160^{\circ}C$. The surface resistivity of ATO grafted by GPTS / Epoxy coating layer remained as $10^{7.6}\Omega/\Box$ in $160^{\circ}C$ for 7 days. ATO grafted by GPTS / Epoxy coating layer coated on PI film was dipped in acetone for 7 days. The surface resistivity remained unchanged as $10^{7.6}\Omega/\Box$. The anti-static layer dipped in water solutions containing each KOH 10 wt % and $H_2SO_4$ 2 wt% was ultra-sonicated for 10 minutes per once until 30th. The surface resistance of anti-static layer containing ATO grafted by GPTS remained unchanged.