• Title/Summary/Keyword: Conductive composite films

Search Result 40, Processing Time 0.044 seconds

Fabrication and Properties of Conductive Carbon Fiber/Polyethylene Composite Films Fabricated under High Intensity Electric Fields : Effect of Polymer Sublayer (고전기장을 이용한 도전성 탄소섬유/폴리에틸렌 복합필름의 제조 및 특성 연구 : 고분자 점착하층의 영향)

  • Park, Min;Kim, Jun-Kyung;Lim, Soon-Ho;Ko, Moon-Bae;Choe, Chul-Rim;Mironov, V.S.;Bang, Hyo-Jae;Lee, Kwang-Hee
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.268-275
    • /
    • 2000
  • We investigated the effect of polymer sublayer on volumetric resistivity and tensile strength of carbon fiber (CF)/polyethylene composite films fabricated under high intensity electric fields. The dependence of volumetric resistivity and tensile strength of the films on the polymer sublayer thickness or mass part exhibited complex behavior according to CF content and CF layer density in the films. As the thickness of polymer sublayer increases, two groups of processes at thermo-mechanical forming stage would take effects in the properties of the films. The first group comprises the increase of polymer layer thickness having reduced CF content compared with central or upper part of the film and insufficient wetting of CF resulting in the loosened structure near upper film side. The second group, on the other hand, is the improvement of mobility of molten sublayer leading to better distribution of CF throughout the film thickness and the formation of more compact structure. The different degree of contribution of these two competing processes at varied CF content and CF layer density could explain complex dependence of the film properties on the polymer sublayer. These results are important to optimize the electrical and mechanical properties of highly conductive polymer films, which can be used as electromagnetic interference shielding materials.

  • PDF

Preparation of Conductive PEDOT-PSMA Hybrid Thin Films Using Simultaneous Co-vaporized Vapor Phase Polymerization (동시-공증발 기상 중합을 이용한 전도성 PEDOT-PSMA 박막 제조)

  • Nodora, Kerguelen Mae;Yim, Jin-Heong
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.330-335
    • /
    • 2018
  • A new approach for the fabrication of organic-organic conducting composite thin films using simultaneous co-vaporization vapor phase polymerization (SC-VPP) of two or more monomers that have different polymerization mechanisms (i.e., oxidation-coupling polymerization and radical polymerization) was reported for the first time. In this study, a PEDOT-PSMA composite thin film consisting of poly(3,4-ethylenedioxythiophene)(PEDOT) and poly(styrene-co-maleic anhydride)(PSMA) was prepared by SC-VPP process. The preparation of organic-organic conductive composite thin films was confirmed through FT-IR and $^1H-NMR$ analyses. The surface morphology analysis showed that the surface of PEDOT-PSMA thin film was rougher than that of PEDOT thin film. Therefore, PEDOT-PSMA exhibited lower electrical conductivity than that of PEDOT. But the conductivity can be improved by adding 2-ethyl-4-methyl imidazole as a weak base. The contact angle of PEDOT-PSMA was about $50^{\circ}$, as compared to $62^{\circ}$ for PEDOT. The demonstrated methodology for preparing an organic-organic conductive hybrid thin film is expected to be useful for adjusting intrinsic conductive polymer (ICP)'s surface properties such as mechanical, optical, and roughness properties.

Morphology and Properties of Polyacrylonitrile/Single Wall Carbon Nanotube Composite Films

  • Kim, Seong Hoon;Min, Byung Ghyl;Lee, Sang Cheol;Park, Sung Bum;Lee, Tae Dong;Park, Min;Kumar, Satish
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.198-203
    • /
    • 2004
  • Composite films were prepared by casting the solution of polyacrylonitrile (PAN) and single wall nanotube (SWNT) in DMF subsequent to sonication. The SWNTs in the films are well dispersed as ropes with 20-30 nm thickness. Moreover, AFM surface image of the composite film displays an interwoven fibrous structure of nanotubes which may give rise to conductive passways and lead to high conductivity. The polarized Raman spectroscopy is an ideal characterization technique for identification and the orientation study of SWNT. The well-defined G-peak intensity at 1580 $cm^{-1}$shows a dependency on the draw ratio under cross-Nicol. The degree of nanotube orientation in the drawn film was measurable from the sine curve obtained by rotating the drawn film on the plane of cross-Nicol of polarized Raman microscope. The threshold loading of SWNT for electrical conductivity in PAN is found to be lower than 1 wt% in the composite film. The electrical conductivity of the SWNT/PAN composite film decreased with increasing of draw ratio due to the collapse of the interwoven fibrous network of the nanotubes with uniaxial orientation.

Development of Spray Coating Methods for Large Area Sol-Gel ZnO/Ag Nanowire Composite Transparent Conducting Substrates (대면적 졸-겔 산화아연/은 나노선 복합 투명 전도 기판 제조를 위한 스프레이 코팅법 개발)

  • Cho, Wonki;Baik, Seung Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.55-60
    • /
    • 2018
  • Transparent conductive thin films (TCFs) are essential materials for solar cells, organic light-emitting diodes, and display panels. Indium tin oxide (ITO) is one of the most widely used commercial materials to create TCFs'; however, new materials that can possibly replace ITO at a lower cost and/or those possessing mechanical flexibility are urgently needed. Silver nanowire (AgNW) is one of those promising materials, as it is less expensive and possesses superior mechanical flexibility as compared to ITO. We used AgNW and sol-gel ZnO to fabricate composite thin films by spray coating. We propose two spray-coating methods: the 'metal-organic chemical vapor deposition (MOCVD)/AgNW' method and the Mixture method. These two methods are expected to be commercialized for high-quality and low-cost products, respectively.

Inkjet-print patterned transparent conductive CNT films

  • Kim, Mun-Ja;Shin, Jun-Ho;Lee, Jong-Hak;Lee, Hyun-Chul;Yoo, Ji-Beom
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1119-1121
    • /
    • 2006
  • Using a chemical radical we modified the surface property of PET substrates. The chemically treated substrate surface improved dispersion of CNTs on substrate and provides suitable adhesion of CNTs to substrate. In addition, an ink-jet printed patterning technique effectively improved the transparency of transparent conductive CNT composite films.

  • PDF

Electromagnetic Shielding Effectiveness of Melt-blown Nonwoven Fabric with Width and Interval of Thin Copper Film (구리박막의 넓이와 간격에 따른 melt-blown 부직포의 전자파 차폐 효과)

  • Shin Hyun Sae;Son Jun Sik;Kim Young Sang;Jeong Jin Soo
    • Textile Coloration and Finishing
    • /
    • v.16 no.5
    • /
    • pp.42-47
    • /
    • 2004
  • The main objective of this work is to develop melt-blown nonwoven fabric composite materials have electromagnetic shielding characteristics using thin copper film. Melt-blown nonwoven fabric is the matrix phase and thin copper films are the reinforcement of the composite materials. Thin copper films are incorporated as conductive fillers to provide the electromagnetic shielding property of the melt-blown nonwoven fabric. The width and interval of thin copper films in the nonwoven fabric are varied by changing 1, 3, 5 mm for thin copper film's width and 1, 3, 5 mm for thin copper film's interval. The shielding effectiveness(SE) of various melt-blown nonwoven fabrics is measured in the frequency range of 50 MHz to 1.8 GHz. The variations of SE of melt-blown nonwoven fabric with width and interval of thin copper films are described. Suitability of melt-blown nonwoven fabric for electromagnetic shielding applications is discussed. The results indicate that the melt-blown nonwoven fabric composite material using thin copper film can be used for the purpose of electromagnetic shielding.

Biocompatibility of Nanoscale Hydroxyapatite-embedded Chitosan Films

  • Sun, Fangfang;Koh, Kwangnak;Ryu, Su-Chak;Han, Dong-Wook;Lee, Jaebeom
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.3950-3956
    • /
    • 2012
  • In order to improve the bioactivity and mechanical properties of hydroxyapatite (HAp), chitosan (Chi) was in situ combined into HAp to fabricate a composite scaffold by a sublimation-assisted compression method. A highly porous film with sufficient mechanical strength was prepared and the bioactivity was investigated by examining the apatite formed on the scaffolds incubated in simulated body fluid. In addition, the cytotoxicity of the HAp/Chi composite was studied by evaluating the viability of murine fibroblasts (L-929 cells) exposed to diluted extracts of the composite films. The apatite layer was assessed using scanning electronic microscopy, inductively coupled plasma-optical emission spectrometry and weight measurement. Composite analysis showed that a layer of micro-sized, needle-like crystals was formed on the surface of the composite film. Additionally, the WST-8 assay after L-929 cells were exposed to diluted extracts of the composite indicated that the HAp/Chi scaffold has good in vitro cytocompatibility. The results indicated that HAp/Chi composites with porous structure are promising scaffolding materials for bone-patch engineering because their porous morphology can provide an environment conductive to attachment and growth of osteoblasts and osteogenic cells.

Electrical Properties and Characterization of 3-Methylthiophene Impregnated Polyurethane films (3-Methylthiophene이 함유된 폴리우레탄 필름의 전기적 특성 연구)

  • Choi, Sei-Young;Choi, Kyo-Chang;Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.39 no.3
    • /
    • pp.234-243
    • /
    • 2004
  • The elastomeric and conductive polyurethane (PU) films were prepared by poly(propylene glycol) (PPG), toluene 2,4-diisocyanate, 3-methylthiophene (3-MT) at various preparation conditions, such as the reaction time, the $FeCl_3$ concentration, the weight ratio of the 3-MT to PU and the reaction temperature for the diffusion-oxidative reaction. The conductive poly (3-methylthiophene) (PMT) layers via the diffusion-oxidative reaction of 3-MT and ferric chloride were formed by immersing the film in organic solution of $FeCl_3$/ethyl acetate. The preparation conditions greatly affected the electrical conductivity of the 3-MT/PU composite. The effects of the reaction time and temperature on morphology and surface free energy were investigated by scanning electron microscopy (SEM) analysis and contact angle measurement, respectively. The conductivity of the composite was as high as 42 S/cm.

Low Temperature Processed Transparent Conductive Thin Films Based on Sol-Gel ZnO / Ag Nanowire (저온 형성 가능한 "졸겔 ZnO / 은 나노선" 복합 투명전도막)

  • Shin, Won-Jung;Kim, Bo Seok;Moon, Chan-Su;Cho, Won-Ki;Baik, Seung Jae
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.110-114
    • /
    • 2014
  • We propose a low temperature sol-gel ZnO/Ag nanowire composite thin film to fulfill low temperature and low cost requirements, which are essential criteria in future flexible electronic devices. In this proposed thin film, Ag nanowire plays the role of electrical conduction, and sol-gel ZnO provides a structural medium with a high visible transmittance. Low temperature restriction in the sol-gel fabrication process prevents sufficient oxidation of Zn acetate precursors, which were solved by a post-coating treatment with ultraviolet light irradiation. Composite thin film formation was performed by spin coating methods with a mixed precursor solution or in a sequential manner. We obtained an average visible transmittance larger than 85% and a sheet resistance smaller than $50{\Omega}/sq$. After optimization in a fabricated composite transparent conductive thin film with the thickness around 100 nm. Similar experimental demonstration in a flexible substrate (polyethyleneterephthalate) was successful, which implies a promising application opportunity of this technology.